Đề cương ôn tập môn Toán Lớp 8 - Chuyên đề: Các bài toán về định lí Ta-let

Đề cương ôn tập môn Toán Lớp 8 - Chuyên đề: Các bài toán về định lí Ta-let

Bài 2: Cho ABC vuông tại A, Vẽ ra phía ngoài tam giác đó các tam giác ABD vuông cân ở B, ACF vuông cân ở C. Gọi H là giao điểm của AB và CD, K là giao điểm của Ac và BF.

Chứng minh rằng:

a) AH = AK

doc 8 trang Người đăng Bảo Việt Ngày đăng 24/05/2024 Lượt xem 70Lượt tải 0 Download
Bạn đang xem tài liệu "Đề cương ôn tập môn Toán Lớp 8 - Chuyên đề: Các bài toán về định lí Ta-let", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
CHUYÊN ĐỀ - CÁC BÀI TOÁN VỀ ĐỊNH LÍ TA-LÉT
A.Kiến thức:
1. Định lí Ta-lét:
* Định lí Ta-lét: 
* Hệ quả: MN // BC 
B. Bài tập áp dụng:
1. Bài 1:
Cho tứ giác ABCD, đường thẳng qua A song song với BC cắt BD ở E, đường thẳng qua B song song với AD cắt AC ở G
a) chứng minh: EG // CD
b) Giả sử AB // CD, chứng minh rằng AB2 = CD. EG
Giải
Gọi O là giao điểm của AC và BD
a) Vì AE // BC (1)
 BG // AC (2)
Nhân (1) với (2) vế theo vế ta có: EG // CD
b) Khi AB // CD thì EG // AB // CD, BG // AD nên
Bài 2: 
Cho ABC vuông tại A, Vẽ ra phía ngoài tam giác đó các tam giác ABD vuông cân ở B, ACF vuông cân ở C. Gọi H là giao điểm của AB và CD, K là giao điểm của Ac và BF.
Chứng minh rằng:
a) AH = AK
b) AH2 = BH. CK
Giải 
Đặt AB = c, AC = b. 
BD // AC (cùng vuông góc với AB) 
nên 
Hay (1)
AB // CF (cùng vuông góc với AC) nên 
Hay (2)
Từ (1) và (2) suy ra: AH = AK
b) Từ và suy ra (Vì AH = AK)
 AH2 = BH . KC
3. Bài 3: Cho hình bình hành ABCD, đường thẳng a đi qua A lần lượt cắt BD, BC, DC theo thứ tự tại E, K, G. Chứng minh rằng:
a) AE2 = EK. EG 
b) 
c) Khi đường thẳng a thay đổi vị trí nhưng vẫn qua A thì tích BK. DG có giá trị không đổi
Giải
a) Vì ABCD là hình bình hành và K BC nên
AD // BK, theo hệ quả của định lí Ta-lét ta có:
b) Ta có: ; nên
 (đpcm)
c) Ta có: (1); (2)
Nhân (1) với (2) vế theo vế ta có: không đổi (Vì a = AB; b = AD là độ dài hai cạnh của hình bình hành ABCD không đổi)
4. Bài 4: 
 Cho tứ giác ABCD, các điểm E, F, G, H theo thứ tự chia trong các cạnh AB, BC, CD, DA theo tỉ số 1:2. Chứng minh rằng:
a) EG = FH
b) EG vuông góc với FH 
Giải
Gọi M, N theo thứ tự là trung điểm của CF, DG
Ta có CM = CF = BC 
EM // AC (1)
Tương tự, ta có: NF // BD (2)
mà AC = BD (3)
Từ (1), (2), (3) suy ra : EM = NF (a)
Tương tự như trên ta có: MG // BD, NH // AC và MG = NH = AC (b)
Mặt khác EM // AC; MG // BD Và AC BD EM MG (4)
Tương tự, ta có: (5)
Từ (4) và (5) suy ra (c)
Từ (a), (b), (c) suy ra EMG = FNH (c.g.c) EG = FH
b) Gọi giao điểm của EG và FH là O; của EM và FH là P; của EM và FN là Q thì 
 mà (đối đỉnh), (EMG = FNH)
Suy ra EO OP EG FH
5. Bài 5: 
Cho hình thang ABCD có đáy nhỏ CD. Từ D vẽ đường thẳng song song với BC, cắt AC tại M và AB tại K, Từ C vẽ đường thẳng song song với AD, cắt AB tại F, qua F ta lại vẽ đường thẳng song song với AC, cắt BC tại P. Chứng minh rằng
a) MP // AB
b) Ba đường thẳng MP, CF, DB đồng quy
Giải
a) EP // AC (1)
 AK // CD (2)
 các tứ giác AFCD, DCBK la các hình bình hành nên 
AF = DC, FB = AK (3)
Kết hợp (1), (2) và (3) ta có MP // AB (Định lí Ta-lét đảo) (4)
b) Gọi I là giao điểm của BD và CF, ta có: = 
Mà (Do FB // DC) IP // DC // AB (5)
Từ (4) và (5) suy ra : qua P có hai đường thẳng IP, PM cùng song song với AB // DC nên theo tiên đề Ơclít thì ba điểm P, I, M thẳng hang hay MP đi qua giao điểm của CF và DB hay ba đường thẳng MP, CF, DB đồng quy
6. Bài 6:
Cho ABC có BC < BA. Qua C kẻ đường thẳng vuông goác với tia phân giác BE của ; đường thẳng này cắt BE tại F và cắt trung tuyến BD tại G. Chứng minh rằng đoạn thẳng EG bị đoạn thẳng DF chia làm hai phần bằng nhau
Giải
Gọi K là giao điểm của CF và AB; M là giao điểm của DF và BC
KBC có BF vừa là phân giác vừa là đường cao nên KBC cân tại B BK = BC và FC = FK
Mặt khác D là trung điểm AC nên DF là đường trung bình của AKC DF // AK hay DM // AB
Suy ra M là trung điểm của BC 
DF = AK (DF là đường trung bình của AKC), ta có
( do DF // BK) (1)
Mổt khác (Vì AD = DC) 
Hay (vì = : Do DF // AB)
Suy ra (Do DF = AK) (2)
Từ (1) và (2) suy ra = EG // BC
Gọi giao điểm của EG và DF là O ta có OG = OE 
Bài tập về nhà
Bài 1: 
 Cho tứ giác ABCD, AC và BD cắt nhau tại O. Đường thẳng qua O và song song với BC cắt AB ở E; đường thẳng song song với CD qua O cắt AD tại F
a) Chứng minh FE // BD
b) Từ O kẻ các đường thẳng song song với AB, AD cắt BD, CD tại G và H. 
Chứng minh: CG. DH = BG. CH
Bài 2: 
Cho hình bình hành ABCD, điểm M thuộc cạnh BC, điểm N thuộc tia đối của tia BC sao cho BN = CM; các đường thẳng DN, DM cắt AB theo thứ tự tại E, F. 
Chứng minh: 
a) AE2 = EB. FE
b) EB =. EF
CHUYÊN ĐỀ – CÁC BÀI TOÁN SỬ DỤNG ĐỊNH LÍ TALÉT VÀ TÍNH CHẤT ĐƯỜNG PHÂN GIÁC
A. Kiến thức:
2. Tính chất đường phân giác: 
ABC ,AD là phân giác góc A 
AD’là phân giác góc ngoài tại A: 
B. Bài tập vận dụng
1. Bài 1:
Cho ABC có BC = a, AB = b, AC = c, phân giác AD
a) Tính độ dài BD, CD
b) Tia phân giác BI của góc B cắt AD ở I; tính tỉ số: 
Giải
a) AD là phân giác của nên 
Do đó CD = a - = 
b) BI là phân giác của nên 
2. Bài 2:
Cho ABC, có < 600 phân giác AD
a) Chứng minh AD < AB
b) Gọi AM là phân giác của ADC. Chứng minh rằng BC > 4 DM
Giải
a)Ta có > = 
 > AD < AB
 b) Gọi BC = a, AC = b, AB = c, AD = d
Trong ADC, AM là phân giác ta có
 DM = ; CD = ( Vận dụng bài 1) DM = 
Để c/m BC > 4 DM ta c/m a > hay (b + d)(b + c) > 4bd (1)
Thật vậy : do c > d (b + d)(b + c) > (b + d)2 4bd . Bất đẳng thức (1) được c/m
Bài 3:
Cho ABC, trung tuyến AM, các tia phân giác của các góc AMB , AMC cắt AB, AC theo thứ tự ở D và E
a) Chứng minh DE // BC
b) Cho BC = a, AM = m. Tính độ dài DE
c) Tìm tập hợp các giao diểm I của AM và DE nếu ABC có BC cố định, AM = m không đổi
d) ABC có điều kiện gì thì DE là đường trung bình của nó
Giải
a) MD là phân giác của nên (1)
 ME là phân giác của nên (2)
Từ (1), (2) và giả thiết MB = MC ta suy ra DE // BC
b) DE // BC . Đặt DE = x 
c) Ta có: MI = DE = không đổi I luôn cách M một đoạn không đổi nên tập hợp các điểm I là đường tròn tâm M, bán kính MI = (Trừ giao điểm của nó với BC
d) DE là đường trung bình của ABC DA = DB MA = MB ABC vuông ở A
4. Bài 4: 
Cho ABC ( AB < AC) các phân giác BD, CE
a) Đường thẳng qua D và song song với BC cắt AB ở K, chứng minh E nằm giữa B và K
b) Chứng minh: CD > DE > BE
Giải
a) BD là phân giác nên 
 (1)
Mặt khác KD // BC nên (2)
Từ (1) và (2) suy ra 
 E nằm giữa K và B
b) Gọi M là giao điểm của DE và CB. Ta có (Góc so le trong) 
 mà E nằm giữa K và B nên > > > EB < DE
Ta lại có > > (Vì = )
Suy ra CD > ED CD > ED > BE
5. Bài 5:
Cho ABC với ba đường phân giác AD, BE, CF. Chứng minh
a. .
b. . 
Giải
a)AD là đường phân giác của nên ta có: (1)
Tương tự: với các phân giác BE, CF ta có: (2) ; (3)
Tửứ (1); (2); (3) suy ra: = 1
b) Đặt AB = c , AC = b , BC = a , AD = da. 
Qua C kẻ đường thẳng song song với AD , cắt tia BA ở H. 
Theo ĐL Talét ta có: 
Do CH < AC + AH = 2b nên: 
Chứng minh tương tự ta có : Và Nên: 
 ( đpcm )
Bài tập về nhà
Cho ABC có BC = a, AC = b, AB = c (b > c), các phân giác BD, CE
a) Tính độ dài CD, BE rồi suy ra CD > BE
b) Vẽ hình bình hành BEKD. Chứng minh: CE > EK
c) Chứng minh CE > BD

Tài liệu đính kèm:

  • docde_cuong_on_tap_mon_toan_lop_8_chuyen_de_cac_bai_toan_ve_din.doc