3. Phân tích đa thức thành nhân tử
1.(a - x)y3 - (a - y)x3 + (x - y)a3.
2.bc(b + c) + ca(c + a) + ba(a + b) + 2abc.
3.x2 y + xy2 + x2 z + xz2+ y2 z + yz2 + 2xyz.
4. Tìm x,y thỏa mãn: x2 + 4y2 + z2 = 2x + 12y - 4z - 14.
5. Cho a +| b + c + d = 0.
Chứng minh rằng a3 + b3 + c3 + d 3= 3(c + d)( ab + cd).
6. Chứng minh rằng nếu x + y + z = 0 thì :
2(x5 + y5 + z5) = 5xyz(x2 + y2 + z2).
7. Chứng minh rằng với x,y nguyên thì :
A = y4 + (x + y) (x + 2y) (x + 3y) (x + 4y)
là số chính phương.
Chuyên đề 1: BIẾN ĐỔI ĐỒNG NHẤT Các ví dụ và phương pháp giải Ví dụ 1: Phân tích đa thức thành nhân tử a. b. . Giải: a. Dùng phương pháp đặt nhân tử chung = b. Dùng phương pháp đặt nhân tử chung rồi sử dụng hằng đẳng thức . Ví dụ 2: Phân tích đa thức thành nhân tử : x8 + 3x4 + 4. x6 - x4 - 2x3 + 2x2 . Giải: a.Dùng phương pháp tách hạng tử rồi sử dụng hằng đẳng thức x8 + 3x4 + 4 = (x8 + 4x4 + 4)- x4 = (x4 + 2)2 - (x2)2 = (x4 - x2 + 2)(x4 + x2 + 2) b.Dùng phương pháp đặt nhân tử chung ,tách hạng tử ,nhóm thích hợp để sử dụng hằng đẳng thức x6 - x4 - 2x3 + 2x2 = x2(x4 - x2 - 2x +2) Ví dụ 3: Phân tích đa thức thành nhân tử : a. b. Giải: a.Dùng phương pháp tách hạng tử rồi nhóm thích hợp: b.Dùng phương pháp đặt nhân tử chung rồi sử dụng hằng đẳng thức Ví dụ 4: Phân tích đa thức thành nhân tử : a. b. . Giải: Sử dụng các hằng đẳng thức .Do đó: b. Ví dụ 5: Cho a + b + c = 0. Chứng minh rằng :a3 + b3 + c3 = 3abc. Giải: Vì a + b + c = 0 Ví dụ 6: Cho 4a2 + b2 = 5ab, và 2a > b > 0. Tính Giải: Biến đổi 4a2 + b2 = 5ab 4a2 + b2 - 5ab = 0 ( 4a - b)(a - b) = 0 a = b. Do đó Ví dụ 7:Cho a,b,c và x,y,z khác nhau và khác 0. Chứng minh rằng nếu: thì Giải: Bài tập vận dụng - Tự luyện Phân tích đa thức thành nhân tử : a. b. c. d. Phân tích đa thức thành nhân tử : . Phân tích đa thức thành nhân tử 1.(a - x)y3 - (a - y)x3 + (x - y)a3. 2.bc(b + c) + ca(c + a) + ba(a + b) + 2abc. 3.x2 y + xy2 + x2 z + xz2+ y2 z + yz2 + 2xyz. Tìm x,y thỏa mãn: x2 + 4y2 + z2 = 2x + 12y - 4z - 14. Cho a +| b + c + d = 0. Chứng minh rằng a3 + b3 + c3 + d 3= 3(c + d)( ab + cd). Chứng minh rằng nếu x + y + z = 0 thì : 2(x5 + y5 + z5) = 5xyz(x2 + y2 + z2). Chứng minh rằng với x,y nguyên thì : A = y4 + (x + y) (x + 2y) (x + 3y) (x + 4y) là số chính phương. Biết a - b = 7. Tính giá trị của biểu thức sau: Cho x,y,z là 3 số thỏa mãn đồng thời:. Hãy tính giá trị biếu thức P = . a.Tính . b.Cho a + b + c = 9 và a2 + b2 + c2 = 53. Tính ab + bc + ca. Cho 3 số x,y,z thỏa mãn điều kiện x + y + z = 0 và xy + yz + zx = 0. Hãy tính giá trị của Biếu thức : S = (x-1)2005 + (y - 1)2006 + (z+1)2007 Cho 3 số a,b,c thỏa điều kiện : . Tính Q = (a25 + b25)(b3 + c3)(c2008 - a2008). ==========o0o========== HƯỚNG DẪN: Phân tích đa thức thành nhân tử : a. b. c. d. Phân tích đa thức thành nhân tử : . Phân tích đa thức thành nhân tử 1.(a - x)y3 - (a - y)x3 + (x-y)a3 2.bc(b + c) + ca(c + a) + ba(a + b) + 2abc 3.x2 y + xy2 + x2 z + xz2+ y2 z + yz2 + 2xyz x2 + 4y2 + z2 = 2x + 12y - 4z - 14 Từ a + b + c + d = 0 Biến đổi tiếp ta được :a3 + b3 + c3 + d 3= 3(c + d)( ab + cd). Nếu x + y + z = 0 thì : Nhưng: (**) Thay (**) vào (*) ta được: 2(x5 + y5 + z5) = 5xyz(x2 + y2 + z2). Với x,y nguyên thì : A = y4 + (x + y) (x + 2y) (x + 3y) (x + 4y) Biến đổi Từ Sử dụng hằng đẳng thức a2 - b2 ; S -=5151 Sử dụng hằng đẳng thức (a + b + c)2; P = 14 Từ giả thiết suy ra: x2 + y2 + z2 = 0 suy ra : x = y = z = 0;S = 0 Từ: . : (a + b)(b + c)(c + a) = 0 Tính được Q = 0 ==========o0o==========
Tài liệu đính kèm: