Tuần 6 Ngày soạn: 10/10/2021 Tiết 12 Ngày dạy: Luyện tập I. Mục tiêu: - Kiến thức: HS Nêu được đầy đủ các tính chất của hình bình hành, vẽ hình ghi GT, KL cho mỗi tính chất. - Kỹ năng: HS biết sử dụng dấu hiệu nhận biết và tính chất nhận biết được hình bình hành. Biết chứng minh một tứ giác là hình bình hành, chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau, 2 đường thẳng song song. - Thái độ: Tuân thủ quy tắc làm bài. II. CHUẩN Bị: - GV: Compa, thước, bảng phụ hoặc bảng nhóm. - HS: Thước, compa. Bài tập. III. tiến trình bài dạy: 1.Ổn định: Kiểm tra sĩ số 2- Kiểm tra bài cũ: HS1: + Phát biểu định nghĩa HBH và các tính chất của HBH? + Muốn CM một tứ giác là HBH ta có mấy cách chứng minh? Là những cách nào? HS2: CMR nếu một tứ giác có các cạnh đối bằng nhau thì các cạnh đối song song với nhau và ngược lại tứ giác có các cạnh đối song song thì các cạnh đối bằng nhau? Đáp án: A 1 2 2 B o 2 1 D C + Chứng minh * Nếu AB = CD và AD = BC. Kẻ đường chéo AC ta có: ABC = CDA (ccc) A1= C1 AD// BC A2= C2 AB// CD à à ả ả * Nếu AD// BC và AB// CD A1 = C1 ; A2 = C2 ABC = CDA(gcg) AB = CD và AD = BC 3-Bài mới: Hoạt động của GV và HS Ghi bảng * HĐ1: Tổ chức luyện tập 1) Chữa bài 44/92 (sgk) Cho HBH : ABCD Gọi E là trung điểm của A B AD; F là trung điểm của BC. Chứng minh rằng: BE = DF E F - GV: Để CM hai đoạn thẳng bằng nhau ta thường qui về CM gì? Có những cách nào để CM? BE = DF D C Chứng minh ABE = CDF hoặc BEDF là HBH ABCD là HBH nên ta có: AD// BC(1) AD = BC(2) E là trung điểm của AB = DC; A = C DE // = BF AD, F là trung điểm của BC (gt) AE = CF ED = 1/2AD,BF = 1/2 BC - GV: các yếu tố trên đã có chưa? dựa vào Từ (1) & (2) ED// BF & ED =BF - 1 - đâu? Vậy EBFD là HBH. - HS trả lời: - GV: Cho HS tự CM cách 2 * HĐ2: Hình thành pp vẽ HBH nhanh nhất 2) Cách vẽ hình bình hành GV: Em hãy nêu cách vẽ HBH nhanh nhất? Cách 1: - Vẽ 2 đường thẳng // ( a//b) - HS nêu cách vẽ HBH nhanh nhất: - Trên a xác định đoạn thẳng AB C1: - Trên b xác định đoạn thẳng CD sao + Dựa vào dấu hiệu 3 cho: AB = CD C2: - Vẽ AD, vẽ BC được HBH : ABCD + Dựa vào dấu hiệu 5 + Cách 2: - Vẽ 2 đường thẳng a & b a- Hình thang có 2 cạnh đáy bằng nhau là cắt nhau tại O HBH - Trên a lấy về 2 phía của O 2 điểm b- Hình thang có 2 cạnh bên // là HBH A & C sao cho OA = OC c- Tứ giác có 2 cạnh đối bằng nhau là HBH - Trên b lấy về 2 phía của O 2 điểm d- Hình thang có 2 cạnh bên bằng nhau là B & D sao cho OB = OD HBH - Vẽ AB, CD, AD, BC Ta được HBH : ABCD * HĐ3: Hoạt động theo nhóm Bài 46/92 (sgk) 3- Chữa bài 46/92 (sgk) GV cho HS thảo luận rồi đứng tại chỗ trả lời: a) Đúng b) Đúng c) Sai d) Sai Bài 47/93 (sgk) 4- Chữa bài 47/93 (sgk) Cho như hình vẽ. Trong đó ABCD là HBH A B a) CMR: AHCK là hbh b) Gọi O là trung điểm của HK, chứng minh K rằng 3 điểm A, O, C thẳng hàng. O H - GV: cho các nhóm làm việc vào bảng nhóm D C - Nhận xét từng nhóm & đưa ra cách phân tích a) ABCD là hình bình hành (gt) CM theo PP phân tích đi lên. Ta có: AD//BC & AD=BC ADH= CBK GV chốt lại cách làm: mà H= K=900 AD=BC (gt) ADH = CBK( c.h – g.n) ( So le trong, AD//BC) ADH= BCK KC=AH (1) ; Vì AH BC, CK BD AH=CK;AH//CK nên KC//AH (2) Từ (1) &(2) AHCK là hbh AHCK là hình bình hành b) Hai đường chéo AC KH tại trung điểm O của mỗi đường O AC hay AC HK =(O) A, O thẳng hàng * HS khỏ-giỏi nõng cao sử dụng vẽ đường chộo HBH để chứng minh ba điểm thẳng hàng. 4- Luyên tập - Củng cố: - Qua bài HBH ta đã áp dụng CM được những điều gì?- GV chốt lại : 5-Hướng dẫn về nhà: Học bài: Đ/ nghĩa, t/chất và DH nhận biết HBH. Làm các bài tập 48, 49,/ 93 SGK.Vẽ HBH, đ/ chéo. - 2 - IV. RÚT KINH NGHIỆM: Ký duyệt tuần 6 Ngày : 7/10/2021 Nội dung : Đảm bảo Phương phỏp : Phự hợp Ngụ Thu Mơ - 3 -
Tài liệu đính kèm: