Giáo án ôn luyện môn Toán Lớp 8 - Học kỳ II - Năm học 2012-2013

Giáo án ôn luyện môn Toán Lớp 8 - Học kỳ II - Năm học 2012-2013

1.Mục tiêu:

- Biết và nắm chắc cách nhân đơn thức, cách cộng, trừ đơn thức, đa thức.

- Hiểu và thực hiện được các phép tính trên một cách linh hoạt.

- Có kĩ năng vận dụng các kiến thức trên vào bài toán tổng hợp.

2. Các tài liệu hổ trợ

- SGK, giáo án.

- SGK, SBT, SGV Toán 8.

3. Nội dung

 a) Tóm tắt:

Lí thuyết: Cách nhân đơn thức, cách cộng, trừ đơn thức, đa thức.

 b) Các hoạt động:

* Hoạt động 1: Luyện tập phép nhân đơn thức.

 

doc 29 trang Người đăng haiha338 Lượt xem 235Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án ôn luyện môn Toán Lớp 8 - Học kỳ II - Năm học 2012-2013", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
TUẦN 20:
Ngµy so¹n: 8 /01/2013
Ngµy d¹y:10/01/2013
Ngµy ®iÒu chØnh: /01/2013
Tiết 1:
ÔN TẬP PHÉP NHÂN ĐƠN THỨC.
CỘNG TRỪ ĐƠN THỨC, ĐA THỨC.
1.Mục tiêu:
- Biết và nắm chắc cách nhân đơn thức, cách cộng, trừ đơn thức, đa thức.
- Hiểu và thực hiện được các phép tính trên một cách linh hoạt.
- Có kĩ năng vận dụng các kiến thức trên vào bài toán tổng hợp.
2. Các tài liệu hổ trợ
- SGK, giáo án.
- SGK, SBT, SGV Toán 8.
3. Nội dung
* Hoạt động 1: Ôn tập phép nhân đơn thức.
HOẠT ĐỘNG CỦA GV - HS
NỘI DUNG
GV: Điền vào chổ trống
x1 =...; xm.xn = ...; = ...
HS: x1 = x; xm.xn = xm + n; = xm.n
GV: Để nhân hai đơn thức ta làm như thế nào?
HS: Để nhân hai đơn thức, ta nhân các hệ số với nhau và nhân các phần biến với nhau.
GV: Tính 2x4.3xy
HS: 2x4.3xy = 6x5y
GV: Tính tích của các đơn thức sau:
a) x5y3 và 4xy2
b) x3yz và -2x2y4
HS: Trình bày ở bảng
a) x5y3.4xy2 = x6y5
b) x3yz. (-2x2y4) =x5y5z
1. Ôn tập phép nhân đơn thức
 x1 = x;
 xm.xn = xm + n; 
 = xm.n
Ví dụ 1: Tính 2x4.3xy
Giải:
2x4.3xy = 6x5y
Ví dụ 2: T ính t ích của các đơn thức sau:
a) x5y3 và 4xy2
b) x3yz và -2x2y4
Giải:
a) x5y3.4xy2 = x6y5
b) x3yz. (-2x2y4) =x5y5z
* Hoạt động 2: Ôn tập phép cộng, trừ đơn thức, đa thức.
HOẠT ĐỘNG
NỘI DUNG
GV: Để cộng, trừ đơn thức đồng dạng ta làm thế nào?
HS: Để cộng, trừ đơn thức đồng dạng ta cộng, trừ các hệ số với nhau và giữ nguyên phần biến.
GV: Tính: 2x3 + 5x3 – 4x3
HS: 2x3 + 5x3 – 4x3 = 3x3
GV: Tính a) 2x2 + 3x2 - x2
 b) -6xy2 – 6 xy2
HS: a) 2x2 + 3x2 - x2 =x2 
 b) -6xy2 – 6 xy2 = -12xy2
GV: Cho hai đa thức
M = x5 -2x4y + x2y2 - x + 1
N = -x5 + 3x4y + 3x3 - 2x + y
Tính M + N; M – N
HS: Trình bày ở bảng
 M + N = (x5 -2x4y + x2y2 - x + 1) + (-x5 + 3x4y + 3x3 - 2x + y)
= x5 -2x4y + x2y2 - x + 1- x5 + 3x4y + 3x3 - 2x + y
= (x5- x5)+( -2x4y+ 3x4y) + (- x+2x) + x2y2+ 1+ y+ 3x3 
= x4y + x + x2y2+ 1+ y+ 3x3 
 M - N = (x5 -2x4y + x2y2 - x + 1) - (-x5 + 3x4y + 3x3 - 2x + y)
= 2x5 -5x4y+ x2y2 +x - 3x3 –y + 1
2. Cộng, trừ đơn thức đồng dạng.
Ví dụ1: Tính 2x3 + 5x3 – 4x3
Giải:
2x3 + 5x3 – 4x3 = 3x3
Ví dụ 2: Tính a) 2x2 + 3x2 - x2
 b) -6xy2 – 6 xy2
Giải
a) 2x2 + 3x2 - x2 =x2 
b) -6xy2 – 6 xy2 = -12xy2
3. Cộng, trừ đa thức
Ví dụ: Cho hai đa thức
M = x5 -2x4y + x2y2 - x + 1
N = -x5 + 3x4y + 3x3 - 2x + y
Tính M + N; M – N
Giải:
M + N = (x5 -2x4y + x2y2 - x + 1) + (-x5 + 3x4y + 3x3 - 2x + y)
= x5 -2x4y + x2y2 - x + 1- x5 + 3x4y + 3x3 - 2x + y
= (x5- x5)+( -2x4y+ 3x4y) + (- x - 2x) + x2y2+ 1+ y+ 3x3 
= x4y - 3x + x2y2+ 1+ y+ 3x3 
M - N = (x5 -2x4y + x2y2 - x + 1) - (-x5 + 3x4y + 3x3 - 2x + y)
= 2x5 -5x4y+ x2y2 +x - 3x3 –y + 1
c) Tóm tắt: 	x1 = x ; xm.xn = xm + n; = xm.n
Cách nhân đơn thức, cộng trừ đơn thức, đa thức.
d) Hướng dẫn các việc làm tiếp: GV cho HS về nhà làm các bài tập sau: 
1. Tính 5xy2.(-x2y)
2. Tính 25x2y2 + (-x2y2)
3. Tính (x2 – 2xy + y2) – (y2 + 2xy + x2 +1)
4. Rót kinh nghiªm:
.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Ngµy so¹n: 8 /01/2013
Ngµy d¹y:10/01/2013
Ngµy ®iÒu chØnh: /01/2013
Tiết 2: 
 LUYỆN TẬP
1.Mục tiêu:
- Biết và nắm chắc cách nhân đơn thức, cách cộng, trừ đơn thức, đa thức.
- Hiểu và thực hiện được các phép tính trên một cách linh hoạt.
- Có kĩ năng vận dụng các kiến thức trên vào bài toán tổng hợp.
2. Các tài liệu hổ trợ
- SGK, giáo án.
- SGK, SBT, SGV Toán 8.
3. Nội dung
 a) Tóm tắt:
Lí thuyết: Cách nhân đơn thức, cách cộng, trừ đơn thức, đa thức.
 b) Các hoạt động:
* Hoạt động 1: Luyện tập phép nhân đơn thức.
HOẠT ĐỘNG CỦA GV - HS
NỘI DUNG
GV: Tính a) 5xy2.(-x2y)
 b) (-10xy2z).(-x2y)
 c) (-xy2).(-x2y3)
 d) (-x2y). xyz
HS: Lần lượt trình bày ở bảng:
a) 5xy2.(-x2y) = -x3y3
b) (-10xy2z).(-x2y) = 2x3y3z
c) (-xy2).(-x2y3) = x3y5
d) (-x2y). xyz = -x3y2z
Bài 1: Tính 
a) 5xy2.(-x2y)
b) (-10xy2z).(-x2y)
c) (-xy2).(-x2y3)
d) (-x2y). xyz
Giải
a) 5xy2.(-x2y) = -x3y3
b) (-10xy2z).(-x2y) = 2x3y3z
c) (-xy2).(-x2y3) = x3y5
d) (-x2y). xyz = -x3y2z
* Hoạt động 2: Luyện tập phép cộng, trừ đơn thức, đa thức.
HOẠT ĐỘNG
NỘI DUNG
GV: Tính 
a) 25x2y2 + (-x2y2)
b) ( x2 – 2xy + y2) – (y2 + 2xy + x2 +1)
 GV yêu cầu học sinh trình bày
 HS: a) 25x2y2 + (-x2y2) = x2y2
b) ( x2 – 2xy + y2) – (y2 + 2xy + x2 +1)
= x2 – 2xy + y2 – y2 - 2xy - x2 -1
= (x2- x2) + (– 2xy- 2xy)+( y2 – y2) -1 
= – 4xy - 1
GV: Điền các đơn thức thích hợp vào ô trống:
a) + 6xy2 = 5xy2
b) 3x5 - = -10x5
c) + - = x2y2 
HS: 
a) (-xy2) + 6xy2 = 5xy2
b) 3x5 - 13x5 = -10x5
c) 3x2y2 + 2x2y2 - 4x2y2= x2y2 
GV: Tính tổng của các đa thức:
P = x2y + xy2 – 5x2y2 + x3
và Q = 3xy2 – x2y + x2y2
M = x2 – 4xy – y2 và N = 2xy + 2y2
HS: Hai HS trình bày ở bảng.
P + Q = x2y + xy2 – 5x2y2 + x3 + 3xy2 – 
 - x2y + x2y2
 = 4xy2 – 4x2y2 + x3
M + N = x2 – 4xy – y2 + 2xy + 2y2
 = x2 – 2xy + y2
Bài 2: Tính 
 a) 25x2y2 + (-x2y2)
b) ( x2 – 2xy + y2) – (y2 + 2xy + x2 +1)
Giải
a) 25x2y2 + (-x2y2) = x2y2
b) ( x2 – 2xy + y2) – (y2 + 2xy + x2 +1)
= x2 – 2xy + y2 – y2 - 2xy - x2 -1
= – 4xy – 1
Bài 3: Điền các đơn thức thích hợp vào ô trống:
a) + 6xy2 = 5xy2
b) 3x5 - = -10x5
c) + - = x2y2 
Giải
a) (-xy2) + 6xy2 = 5xy2
b) 3x5 - 13x5 = -10x5
c) 3x2y2 + 2x2y2 - 4x2y2= x2y2 
Bài 4: Tính tổng của các đa thức:
P = x2y + xy2 – 5x2y2 + x3
và Q = 3xy2 – x2y + x2y2
M = x2 – 4xy – y2 và N = 2xy + 2y2
Giải:
P + Q = x2y + xy2 – 5x2y2 + x3 + 3xy2 – 
 - x2y + x2y2
 = 4xy2 – 4x2y2 + x3
M + N = x2 – 4xy – y2 + 2xy + 2y2
 = x2 – 2xy + y2
	Hoạt động 3: Hướng dẫn vÒ nhµ:
Bài tập 
1. Tính : a) (-2x3).x2 ; b) (-2x3).5x; c) (-2x3).
2. Tính: a) (6x3 – 5x2 + x) + ( -12x2 +10x – 2) 
	 b) (x2 – xy + 2) – (xy + 2 –y2)
4. Rót kinh nghiªm:
.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
-------------------------- @&? --------------------------
TUẦN 21:
Ngµy so¹n: 15 /01/2013
Ngµy d¹y:17/01/2013
Ngµy ®iÒu chØnh: /01/2013
Tiết 3: 
 NHÂN ĐƠN THỨC VỚI ĐA THỨC. NHÂN ĐA THỨC 
1.Mục tiêu:
- Biết và nắm chắc cách nhân đơn thức với đa thức, cách nhân đa thức với đa thức.
- Hiểu và thực hiện được các phép tính trên một cách linh hoạt.
- Có kĩ năng vận dụng các kiến thức trên vào bài toán tổng hợp.
2. Các tài liệu hổ trợ
- SGK, giáo án.
- SBT toán 8.
3. Nội dung
* Hoạt động 1: Nhân đơn thức với đa thức (20’) 
HOẠT ĐỘNG
NỘI DUNG
GV: Để nhân đơn thức với đa thức ta làm như thế nào?
HS: Để nhân đơn thức với đa thức ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích lại với nhau.
GV: Viết dạng tổng quát?
HS: A(B + C) = AB + AC.
GV: Tính: 2x3(2xy + 6x5y)
HS: Trình bày ở bảng
 2x3(2xy + 6x5y)
= 2x3.2xy + 2x3.6x5y
= 4x4y + 12x8y
GV: Làm tính nhân:
a) x5y3( 4xy2 + 3x + 1)
b) x3yz (-2x2y4 – 5xy)
HS: Trình bày ở bảng
 a) x5y3( 4xy2 + 3x + 1)
= x6y5 – x6y3 x5y3
b) x3yz (-2x2y4 – 5xy)
= x5y5z – x4y2z
1. Nhân đơn thức với đa thức.
 A(B + C) = AB + AC.
Ví dụ 1: Tính 2x3(2xy + 6x5y)
Giải:
 2x3(2xy + 6x5y)
= 2x3.2xy + 2x3.6x5y
= 4x4y + 12x8y
Ví dụ 2: Làm tính nhân:
a) x5y3( 4xy2 + 3x + 1)
b) x3yz (-2x2y4 – 5xy)
Giải:
 a) x5y3( 4xy2 + 3x + 1)
= x6y5 – x6y3 x5y3
b) x3yz (-2x2y4 – 5xy)
= x5y5z – x4y2z
* Hoạt động 2: Nhân đa thức với đa thức. (20’)
HOẠT ĐỘNG
NỘI DUNG
GV: Để nhân đa thức với đa thức ta làm thế nào?
HS: Để nhân đa thức với đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích lại với nhau.
GV: Viết dạng tổng quát?
HS:
 (A + B)(C + D) = AC +AD +BC+BD
GV: Thực hiện phép tính:
 (2x3 + 5y2)(4xy3 + 1)
HS: (2x3 + 5y2)(4xy3 + 1)
= 2x3.4xy3 +2x3.1 + 5y2.4xy3 + 5y2.1
= 8x4y3 +2x3 + 20xy5 + 5y2
GV: Tính (5x – 2y)(x2 – xy + 1)
HS: 
(5x – 2y)(x2 – xy + 1)
= 5x.x2 - 5x.xy + 5x.1 - 2y.x2 +2y.xy - 2y.1
= 5x3 - 5x2y + 5x - 2x2y +2xy2 - 2y
GV: Thực hiện phép tính:
 (x – 1)(x + 1)(x + 2)
HS: Trình bày ở bảng:
(x – 1)(x + 1)(x + 2)
= (x2 + x – x -1)(x + 2)
= (x2 - 1)(x + 2)
= x3 + 2x2 – x -2
2. Nhân đa thức với đa thức.
(A + B)(C + D) = AC + AD + BC + BD
Ví dụ1: Thực hiện phép tính: 
 (2x3 + 5y2)(4xy3 + 1)
Giải:
 (2x3 + 5y2)(4xy3 + 1)
= 2x3.4xy3 +2x3.1 + 5y2.4xy3 + 5y2.1
= 8x4y3 +2x3 + 20xy5 + 5y2
Ví dụ 2: Thực hiện phép tính:
 (5x – 2y)(x2 – xy + 1)
Giải
 (5x – 2y)(x2 – xy + 1)
= 5x.x2 - 5x.xy + 5x.1 - 2y.x2 +2y.xy - 2y.1
= 5x3 - 5x2y + 5x - 2x2y +2xy2 - 2y
V í dụ 3: Thực hiện phép tính:
 (x – 1)(x + 1)(x + 2)
Giải
(x – 1)(x + 1)(x + 2)
= (x2 + x – x -1)(x + 2)
= (x2 - 1)(x + 2)
= x3 + 2x2 – x -2
c) Tóm tắt: 	(2’)	 
- Cách nhân đơn thức, cộng trừ đơn thức, đa thức.
- Quy tắc nhân đơn thức với đa thức : A(B + C) = AB + AC.
- Quy tắc nhân đa thức với đa thức : (A + B)(C + D) = AC +AD +BC+BD
4. Rót kinh nghiªm:
............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ... háp đặt nhân tử chung 
HOẠT ĐỘNG
NỘI DUNG
GV: Thế nào là phân tích đa thức thành nhân tử?
HS: Phân tích đa thức thành nhân tử là biến đổi đa thức đó thành một tích của những đa thức.
GV: Phân tích đa thức thành nhân tử:
5x – 20y
5x(x – 1) – 3x(x – 1)
x(x + y) -5x – 5y
HS: Vận dụng các kiến thức đa học để trình bày ở bảng.
1.Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
 Ví dụ: Phân tích đa thức thành nhân tử:
5x – 20y
5x(x – 1) – 3x(x – 1)
x(x + y) -5x – 5y
Giải:
5x – 20y
 = 5(x – 4)
5x(x – 1) – 3x(x – 1)
= x(x – 1)(5 – 3)
= 2 x(x – 1)
x(x + y) -5x – 5y
= x(x + y) – (5x + 5y)
= x(x + y) – 5(x + y)
 = (x + y) (x – 5)
 * Hoạt động 2: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức 
HOẠT ĐỘNG
NỘI DUNG
GV: Phân tích đa thức thành nhân tử:
x2 – 9
4x2 - 25
x6 - y6
HS: Trình bày ở bảng.
x2 – 9 = x2 – 32 = (x – 3)(x + 3)
4x2 – 25 = (2x)2 - 52
= (2x - 5)( 2x + 5)
x6 - y6
= (x3)2 -(y3)2 
 = (x3 - y3)( x3 + y3)
 = (x + y)(x - y)(x2 -xy + y2)(x2+ xy+ y2)
2.Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
 Ví dụ: Phân tích đa thức thành nhân tử:
 x2 – 9
4x2 - 25
x6 - y6
Giải:
 x2 – 9 = x2 – 32 = (x – 3)(x + 3)
4x2 – 25 = (2x)2 - 52
= (2x - 5)( 2x + 5)
x6 - y6
= (x3)2 -(y3)2 
 = (x3 - y3)( x3 + y3)
 = (x + y)(x - y)(x2 -xy + y2)(x2+ xy+ y2)
 *Hoạt động 3:Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử 
HOẠT ĐỘNG
NỘI DUNG
GV: Phân tích đa thức thành nhân tử:
a) x2 – x – y2 - y
x2 – 2xy + y2 – z2
HS: Trình bày ở bảng.
x2 – x – y2 – y
= (x2 – y2) – (x + y)
= (x – y)(x + y) - (x + y)
=(x + y)(x – y - 1)
b) x2 – 2xy + y2 – z2
 = (x2 – 2xy + y2 )– z2
 = (x – y)2 – z2
 = (x – y + z)(x – y - z)
3.Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử. 
 Ví dụ: Phân tích đa thức thành nhân tử:
a) x2 – x – y2 - y
b) x2 – 2xy + y2 – z2
Giải:
x2 – x – y2 – y
= (x2 – y2) – (x + y)
= (x – y)(x + y) - (x + y)
=(x + y)(x – y - 1)
b) x2 – 2xy + y2 – z2
 = (x2 – 2xy + y2 )– z2
 = (x – y)2 – z2
 = (x – y + z)(x – y - z)
*Hoạt động 4:Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp 
HOẠT ĐỘNG
NỘI DUNG
GV: Phân tích đa thức thành nhân tử:
a) x4 + 2x3 +x2
b) 5x2 + 5xy – x - y
HS: Trình bày ở bảng.
a) x4 + 2x3 +x2
= x2(x2 + 2x + 1) = x2(x + 1)2
5x2 + 5xy – x – y
= (5x2 + 5xy) – (x +y)
= 5x(x +y) - (x +y)
= (x +y)(5x – 1)
4.Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp 
 Ví dụ: Phân tích đa thức thành nhân tử:
a) x4 + 2x3 +x2
b) 5x2 + 5xy – x - y
Giải:
 a) x4 + 2x3 +x2
= x2(x2 + 2x + 1) = x2(x + 1)2
5x2 + 5xy – x – y
= (5x2 + 5xy) – (x +y)
= 5x(x +y) - (x +y)
= (x +y)(5x – 1)
c) Tóm tắt: 	 Các phương pháp phân tích đa thức thành nhân tử
d) Hướng dẫn các việc làm tiếp:
 GV cho HS về nhà làm các bài tập sau: 
Phân tích các đa thức sau thành nhân tử: 
9x2 + 6xy + y2 ; 	 b) 5x – 5y + ax - ay
 c) (x + y)2 – (x – y)2 ; d) xy(x + y) + yz(y +z) +xz(x +z) + 2xyz
4. Rót kinh nghiªm:
.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
-------------------------- @&? --------------------------
TUẦN 26:
Ngµy so¹n: 25 /02/2013
Ngµy d¹y:28/02/2013
Ngµy ®iÒu chØnh: /02/2013
Tiết 11: 
 LUYỆN TẬP
1.Mục tiêu:
- Biết và nắm chắc các phương pháp phân tích đa thức thành nhân tử.
- Hiểu và thực hiện được các phương pháp trên một cách linh hoạt. 
- Có kĩ năng vận dụng phối hợp các phương pháp vào bài toán tổng hợp.
2. Các tài liệu hổ trợ
- SGK, giáo án.
- SBT, SGV Toán 8.
3. Nội dung
 a) Tóm tắt: Lí thuyết: Các phương pháp phân tích đa thức thành nhân tử
 b) Các hoạt động:
* Hoạt động 1: Phân tích thành nhân tử. 
HOẠT ĐỘNG
NỘI DUNG
GV: Phân tích các đa thức sau thành nhân tử: 
a) 9x2 + 6xy + y2 ; 	
 b) 5x – 5y + ax - ay
c) (x + y)2 – (x – y)2 ; 
d) 5x2 – 10xy + 5y2 -20z2
HS: 
a) 9x2 + 6xy + y2 
= (3x)2 + 2.3xy + y2
= (3x + y)2
b) 5x – 5y + ax – ay
= (5x – 5y) + (ax – ay)
= 5(x – y) + a(x – y)
=(x – y)(5 + a)
c) (x + y)2 – (x – y)2 
= (x + y +x – y)( x + y – x + y)
= 2x.2y = 4xy
d) 5x2 – 10xy + 5y2 -20z2
= 5(x2 – 2xy +y2 - 4z2)
= 5[(x2 – 2xy +y2) – (2z)2]
= 5[(x – y)2 – (2z)2]
=5(x – y +2z)(x – y – 2z)
Bài 1: Phân tích các đa thức sau thành nhân tử: 
a) 9x2 + 6xy + y2 ; 	
b) 5x – 5y + ax - ay
c) (x + y)2 – (x – y)2 ; 
d) 5x2 – 10xy + 5y2 -20z2
Giải:
a) 9x2 + 6xy + y2 
= (3x)2 + 2.3xy + y2
= (3x + y)2
b) 5x – 5y + ax – ay
= (5x – 5y) + (ax – ay)
= 5(x – y) + a(x – y)
=(x – y)(5 + a)
c) (x + y)2 – (x – y)2 
= (x + y +x – y)( x + y – x + y)
= 2x.2y = 4xy
d) 5x2 – 10xy + 5y2 -20z2
= 5(x2 – 2xy +y2 - 4z2)
= 5[(x2 – 2xy +y2) – (2z)2]
= 5[(x – y)2 – (2z)2]
=5(x – y +2z)(x – y – 2z)
* Hoạt động 2: Tính nhanh. 
HOẠT ĐỘNG
NỘI DUNG
GV: Tính nhanh:
a) 252 - 152
b) 872 + 732 -272 -132
HS:
GV: Vận dụng các kiến thức nào để tính các bài toán trên?
HS: Vận dụng các phương pháp phân tích đa thức thành nhân tử để tính nhanh các bài trên.
GV: Yêu cầu HS trình bày ở bảng
HS:
 GV: Tính nhanh giá trị của biểu thức sau tại x = 6 ; y = -4; z = 45
 x2 - 2xy - 4z2 + y2
HS: 
GV: Nêu cách làm bài toán trên?
HS: Phân tích đa thức trên thành nhân tử sau đó thay các giá trị của x, y, z vòa kết quả đã được phân tích.
GV: Cho Hs trình bày ở bảng
Bài 2: Tính nhanh:
a) 252 - 152
b) 872 + 732 -272 -132
Giải:
a) 252 - 152
= (25 + 15)(25 – 15)
= 10.40 = 400
b) 872 + 732 -272 -132
= (872 -132) + (732 -272)
= (87 -13)( 87 + 13) + (73 -27)(73 +27)
=100.74 + 100.36
=100(74 + 36)
= 100.100 = 10000
Bài 3: Tính nhanh giá trị của biểu thức sau tại x = 6 ; y = -4; z = 45
 x2 - 2xy - 4z2 + y2
Giải:
 x2 - 2xy - 4z2 + y2
= x2 - 2xy + y2 - 4z2 
= ( x2 - 2xy + y2) - 4z2
= (x –y)2 – (2z)2
= (x –y – 2z)( x –y + 2z)
Thay x = 6 ; y = -4; z = 45 ta có:
(6 + 4 – 90)(6 + 4 +90)
= -80.100= -8000
c) Tóm tắt: 	Các phương pháp phân tích đa thức thành nhân tử
d) Hướng dẫn các việc làm tiếp: 
Bài tập 	Phân tích các đa thức sau thành nhân tử:
a) 4x2 + 20x + 25; 
b) x2 + x + 	 
c) a3 – a2 – ay +xy
d) (3x + 1)2 – (x + 1)2
e) x2 +5x - 6
4. Rót kinh nghiªm:
.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
-------------------------- @&? --------------------------
Ngµy so¹n:25 /02/2013
Ngµy d¹y:28/02/2013
Ngµy ®iÒu chØnh: /02/2013
Tiết 12: 
quy ®ång mÉu thøc cña nhiÒu ph©n Thøc
A. Môc tiªu:
- Cñng cè quy t¾c quy ®ång ph©n thøc ®¹i sè.
- RÌn kÜ n¨ng t×m mÉu thøc chung, quy ®ång ph©n thøc .
B. ChuÈn bÞ:
- GV: hÖ thèng bµi tËp.
- HS: c¸c kiÕn thøc vÒ c¸ch quy dång ph©n thøc ®¹i sè.
C. TiÕn tr×nh.
1. æn ®Þnh líp.
2. KiÓm tra bµi cò.
- Yªu cÇu HS nh¾c l¹i c¸c b­íc quy ®ång ph©n thøc.
HS: 
3. Bµi míi.
Ho¹t ®éng cña GV, HS
Néi dung
GV cho HS lµm bµi.
D¹ng 1: T×m mÉu thøc chung.
Bµi 1: T×m mÉu thøc chung cña c¸c ph©n thøc sau.
? §Ó t×m mÉu thøc chung ta lµm thÕ nµo?
*HS: Ph©n tÝch mÉu thµnh nh©n tö, sau ®ã t×m nh©n tö chung vµ nh©n tö riªng víi sè mò lín nhÊt.
GV yªu cÇu HS lªn b¶ng lµm bµi.
D¹ng 2: Quy ®ång.
Bµi 2: 
? Nªu c¸c b­íc quy ®ång mÉu nhiÒu ph©n thøc?
*HS: 
- T×m MTC
- T×m nh©n tö phô
- Nh©n c¶ tö vµ mÉu víi nh©n tö phô t­¬ng øng.
Yªu cÇu HS lªn b¶ng lµm bµi. 
GV lµm mÉu phÇn a, c¸c phÇn kh¸c HS lµm t­¬ng tù.
Bµi 3: 
GV yªu cÇu HS lªn b¶ng lµm theo ®óng tr×nh tù ba b­íc ®· häc.
HS lªn b¶ng lµm bµi.
Bµi 4:Thùc hiÖn phÐp tÝnh sau :
- Yªu cÇu HS lªn b¶ng lµm bµi.
*HS: lªn b¶ng.
Bµi 5: Thùc hiÖn phÐp tÝnh :
a) + 
b) + + .
- Yªu cÇu HS nh¾c l¹i c¸c b­íc céng hai ph©n thøc.
*HS: - Quy ®ång mÉu thøc.
 - Céng hai ph©n thøc.
? Nªu c¸c b­íc quy ®ång mÉu thøc?
*HS: - T×m MTC
 - T×m NTP
 - Quy ®ång.
- Yªu cÇu HS lªn b¶ng lµm bµi.
D¹ng 1: T×m mÉu thøc chung.
Bµi 1: T×m mÉu thøc chung cña c¸c ph©n thøc sau.
a/ MTC: 60x4y3z3.
b/ Ta cã:
y2 - yz = y(y - z)
y2 + yz = y(y + z)
y2 - z2 = (y + z)(y - z)
VËy MTC: y.(y + z)(y - z)
c/ Ta cã: 
2x - 4 = 2( x - 2)
3x - 9 = 3(x - 3)
50 - 25x = 25(2 - x)
VËy MTC : - 150(x - 2)(x - 3)
D¹ng 2: Quy ®ång.
Bµi 2: 
- MTC: 60x4y3z3
- NTP: 
60x4y3z3 : 15x3y2 = 4xyz3
60x4y3z3 : 10x4z3 = 6y3
60x4y3z3 : 20y3z = 3x4z2
- Quy ®ång.
Bµi 3: 
a/ MTC : 2.(x + 3)(x - 3)
b/ MTC : 2x(x - 1)2
c/ MTC: x3 + 1
d/ MTC: 10x(x2 - 4y2)
e/ MTC: 2.(x + 2)3.
Bµi 4:Thùc hiÖn phÐp tÝnh sau :
Bµi 5: Thùc hiÖn phÐp tÝnh :
a) + 
 2x + 6 = 2(x + 3) 
 x2 + 3x =x(x +3)
MTC: 2x(x + 3)
 + = + 
b) + + .
MTC: 4y2 - x2
 + + 
= + + 
= 
= 
= 
BTVN:
Quy ®ång mÉu c¸c ph©n thøc sau:
4. Rót kinh nghiªm:
.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
-------------------------- @&? -------------------------

Tài liệu đính kèm:

  • docgiao_an_on_luyen_mon_toan_lop_8_hoc_ky_ii_nam_hoc_2012_2013.doc