Đề cương ôn tập Toán Lớp 8 học kì I - Năm học 2009-2010 - Cao Khắc Cường

Đề cương ôn tập Toán Lớp 8 học kì I - Năm học 2009-2010 - Cao Khắc Cường

Bài1: Thực hiện các phép tính sau:

a) (2x - y)(4x2 - 2xy + y2) b) (6x5y2 - 9x4y3 + 15x3y4): 3x3y2

c) (2x3 - 21x2 + 67x - 60): (x - 5) d) (x4 + 2x3 +x - 25):(x2 +5)

e) (27x3 - 8): (6x + 9x2 + 4)

Bài 2: Rút gọn các biểu thức sau:

a) (3x – 2)(x + 1) – (2x + 5)(x2 – 1): (x + 1)

b) (2x + 1)2 – 2(2x + 1)(3 – x) + (3 – x)2

c) (x – 1)3 – (x + 1)(x2 – x + 1) – (3x + 1)(1 – 3x)

d) (x2 + 1)(x – 3) – (x – 3)(x2 + 3x + 9)

e) (3x + 2)2 + (3x - 2)2 – 2(3x + 2)(3x - 2) + x

Bài 3: Rút gọn các biểu thức sau:

a) (x + y)2 - (x - y)2 b) (a + b)3 + (a - b)3 - 2a3

c) 98.28 - (184 - 1)(184 + 1)

Bài 4: Chứng minh biểu thức sau không phụ thuộc vào biến x,y

A= (3x - 5)(2x + 11) - (2x + 3)(3x + 7) B = (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1) C = (x - 1)3 - (x + 1)3 + 6(x + 1)(x - 1)

 

doc 26 trang Người đăng tuvy2007 Lượt xem 547Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Đề cương ôn tập Toán Lớp 8 học kì I - Năm học 2009-2010 - Cao Khắc Cường", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 Tài liệu ụn tập Mụn : Đại số 8 Năm học : 2009 – 2010
 HỌC KỲ 1
Bài1: Thực hiện các phép tính sau:
a) (2x - y)(4x2 - 2xy + y2) b) (6x5y2 - 9x4y3 + 15x3y4): 3x3y2
c) (2x3 - 21x2 + 67x - 60): (x - 5) d) (x4 + 2x3 +x - 25):(x2 +5)
e) (27x3 - 8): (6x + 9x2 + 4)
Bài 2 : Rút gọn các biểu thức sau:
a) [(3x – 2)(x + 1) – (2x + 5)(x2 – 1)] : (x + 1)
b) (2x + 1)2 – 2(2x + 1)(3 – x) + (3 – x)2 
c) (x – 1)3 – (x + 1)(x2 – x + 1) – (3x + 1)(1 – 3x)
d) (x2 + 1)(x – 3) – (x – 3)(x2 + 3x + 9)
e) (3x + 2)2 + (3x - 2)2 – 2(3x + 2)(3x - 2) + x
Bài 3: Rút gọn các biểu thức sau:
a) (x + y)2 - (x - y)2 b) (a + b)3 + (a - b)3 - 2a3
c) 98.28 - (184 - 1)(184 + 1)
Bài 4: Chứng minh biểu thức sau không phụ thuộc vào biến x,y
A= (3x - 5)(2x + 11) - (2x + 3)(3x + 7) B = (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1) C = (x - 1)3 - (x + 1)3 + 6(x + 1)(x - 1)
Bài 5: Phân tích các đa thức sau thành nhân tử:
 a) x2 - y2 - 2x + 2y 	 b) 2x + 2y - x2 - xy 
 c) 3a2 - 6ab + 3b2 - 12c2 	 d) x2 - 25 + y2 + 2xy
 e) a2 + 2ab + b2 - ac - bc 	 f) x2 - 2x - 4y2 - 4y 
 g) x2y - x3 - 9y + 9x 	 h) x2(x-1) + 16(1- x)
 n) 81x2 - 6yz - 9y2 - z2 	m)xz-yz-x2+2xy-y2 
 p) x2 + 8x + 15 	 k) x2 - x – 12
Bài 6: Phân tích các đa thức sau thành nhân tử:
1) 4x2 – 25 + (2x + 7)(5 – 2x) 	9) x3 + x2y – 4x – 4y
2) 3(x+ 4) – x2 – 4x 	10) x3 – 3x2 + 1 – 3x	 
3) 5x2 – 5y2 – 10x + 10y 	11) 3x2 – 6xy + 3y2 – 12z2
4) x2 – xy + x – y 	12) x2 – 2x – 15
5) ax – bx – a2 + 2ab – b2 	13) 2x2 + 3x – 5
6) x2 + 4x – y2 + 4 	14) 2x2 – 18
7) x3 – x2 – x + 1 	15) x2 – 7xy + 10y2 
8) x4 + 6x2y + 9y2 - 1 	16) x3 – 2x2 + x – xy2
Bài tập phân tích đa thức thành nhân tử
Bài tập 1: Phân tích đa thức thành nhân tử. 
1.
16x3y + 0,25yz3
21.
(a + b + c)2 + (a + b – c)2 – 4c2
2.
x 4 – 4x3 + 4x2
22.
4a2b2 – (a2 + b2 – c2)2
3.
2ab2 – a2b – b3
23.
a 4 + b4 + c4 – 2a2b2 – 2b2c2 – 2a2c2
4.
a 3 + a2b – ab2 – b3
24.
a(b3 – c3) + b(c3 – a3) + c(a3 – b3)
5.
x 3 + x2 – 4x - 4
25.
a 6 – a4 + 2a3 + 2a2
6.
x 3 – x2 – x + 1
26.
(a + b)3 – (a – b)3
7.
x 4 + x3 + x2 - 1
27.
X 3 – 3x2 + 3x – 1 – y3
8.
x 2y2 + 1 – x2 – y2
28.
X m + 4 + xm + 3 – x - 1
10.
x 4 – x2 + 2x - 1
29.
(x + y)3 – x3 – y3
11.
3a – 3b + a2 – 2ab + b2
30.
(x + y + z)3 – x3 – y3 – z3
12.
a 2 + 2ab + b2 – 2a – 2b + 1
31.
(b – c)3 + (c – a)3 + (a – b)3
13.
a 2 – b2 – 4a + 4b
32.
x3 + y3+ z3 – 3xyz
14.
a 3 – b3 – 3a + 3b
33.
(x + y)5 – x5 – y5
15.
x 3 + 3x2 – 3x - 1
34.
(x2 + y2)3 + (z2 – x2)3 – (y2 + z2)3
16.
x 3 – 3x2 – 3x + 1
35.
17.
x 3 – 4x2 + 4x - 1
36.
18.
4a2b2 – (a2 + b2 – 1)2
37.
19.
(xy + 4)2 – (2x + 2y)2
38.
20.
(a2 + b2 + ab)2 – a2b2 – b2c2 – c2a2
39.
Bài tập 2: Phân tích đa thức thành nhân tử.
1.
x2 – 6x + 8
23.
x3 – 5x2y – 14xy2
2.
x2 – 7xy + 10y2
24.
x4 – 7x2 + 1
3.
a2 – 5a - 14
25.
4x4 – 12x2 + 1
4.
2m2 + 10m + 8
26.
x2 + 8x + 7
5.
4p2 – 36p + 56
27.
x2 – 13x + 36
6.
x3 – 5x2 – 14x
28.
x2 + 3x – 18
7.
a4 + a2 + 1
29.
x2 – 5x – 24
8.
a4 + a2 – 2
30.
3x2 – 16x + 5
9.
x4 + 4x2 + 5
31.
8x2 + 30x + 7
10.
x3 – 10x - 12
32.
2x2 – 5x – 12
11.
x3 – 7x - 6
33.
6x2 – 7x – 20
12.
x2 – 7x + 12
34.
x2 – 7x + 10
13.
x2 – 5x – 14
35.
x2 – 10x + 16
14.
4 x2 – 3x – 1
36.
3x2 – 14x + 11
15.
3 x2 – 7x + 4
37.
5x2 + 8x – 13
16.
2 x2 – 7x + 3
38.
x2 + 19x + 60
17.
6x3 – 17x2 + 14x – 3
39.
x4 + 4x2 - 5
18.
4x3 – 25x2 – 53x – 24
40.
x3 – 19x + 30
19.
x4 – 34x2 + 225
41.
x3 + 9x2 + 26x + 24
20.
4x4 – 37x2 + 9
42.
4x2 – 17xy + 13y2
21.
x4 + 3x3 + x2 – 12x - 20
43.
- 7x2 + 5xy + 12y2
22.
2x4 + 5x3 + 13x2 + 25x + 15
44.
x3 + 4x2 – 31x - 70
Bài tập 3: Phân tích đa thức thành nhân tử.
1.
x4 + x2 + 1
17.
x5 - x4 - 1
2.
x4 – 3x2 + 9
18.
x12 – 3x6 + 1
3.
x4 + 3x2 + 4
19.
x8 - 3x4 + 1
4.
2x4 – x2 – 1
20.
a5 + a4 + a3 + a2 + a + 1
5.
x4y4 + 4
21.
m3 – 6m2 + 11m - 6
6.
x4y4 + 64
22.
x4 + 6x3 + 7x2 – 6x + 1
7.
4 x4y4 + 1
23.
x3 + 4x2 – 29x + 24
8.
32x4 + 1
24.
x10 + x8 + x6 + x4 + x2 + 1
9.
x4 + 4y4
25.
x7 + x5 + x4 + x3 + x2 + 1
10.
x7 + x2 + 1
26.
x5 – x4 – x3 – x2 – x - 2
11.
x8 + x + 1
27.
x8 + x6 + x4 + x2 + 1
12.
x8 + x7 + 1
28.
x9 – x7 – x6 – x5 + x4 + x3 + x2 + 1
13.
x8 + 3x4 + 1
29.
a(b3 – c3) + b(c3 – a3) + c(a3 – b3)
14.
x10 + x5 + 1
30.
15.
x5 + x + 1
31.
16.
x5 + x4 + 1
32.
Bài tập 4: Phân tích đa thức thành nhân tử.
1. x2 + 2xy – 8y2 + 2xz + 14yz – 3z2
2. 3x2 – 22xy – 4x + 8y + 7y2 + 1
3. 12x2 + 5x – 12y2 + 12y – 10xy – 3
4. 2x2 – 7xy + 3y2 + 5xz – 5yz + 2z2
5. x2 + 3xy + 2y2 + 3xz + 5yz + 2z2
6. x2 – 8xy + 15y2 + 2x – 4y – 3
7. x4 – 13x2 + 36
8. x4 + 3x2 – 2x + 3
9. x4 + 2x3 + 3x2 + 2x + 1
Bài tập 5: Phân tích đa thức thành nhân tử:
1. (a – b)3 + (b – c)3 + (c – a)3
2. (a – x)y3 – (a – y)x3 – (x – y)a3
3. x(y2 – z2) + y(z2 – x2) + z(x2 – y2)
4. (x + y + z)3 – x3 – y3 – z3
5. 3x5 – 10x4 – 8x3 – 3x2 + 10x + 8
6. 5x4 + 24x3 – 15x2 – 118x + 24
7. 15x3 + 29x2 – 8x – 12
8. x4 – 6x3 + 7x2 + 6x – 8
9. x3 + 9x2 + 26x + 24
Bài tập 6: Phân tích đa thức thành nhân tử.
1. a(b + c)(b2 – c2) + b(a + c)(a2 – c2) + c(a + b)(a2 – b2)
2. ab(a – b) + bc(b – c) + ca(c – a)
3. a(b2 – c2) – b(a2 – c2) + c(a2 – b2)
4. (x – y)5 + (y – z)5 + (z – x)5
5. (x + y)7 – x7 – y7
6. ab(a + b) + bc(b + c) + ca(c + a) + abc
7. (x + y + z)5 – x5 – y5 – z5
8. a(b2 + c2) + b(c2 + a2) + c(a2 + b2) + 2abc
9. a3(b – c) + b3(c – a) + c3(a – b)
10. abc – (ab + bc + ac) + (a + b + c) – 1
 MỘT SỐ DẠNG BÀI TẬP CẦN LUYỆN.
 Bài 1 : Phân tích đa thức thành nhân tử.
1. (x2 + x)2 + 4x2 + 4x - 12
2. (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2
3. (x2 + x + 1)(x2 + x + 2) - 12
4. (x + 1)(x + 2)(x + 3)(x + 4) - 24
5. (x2 + 2x)2 + 9x2 + 18x + 20
6. x2 - 4xy + 4y2 - 2x + 4y - 35
7. (x + 2)(x + 4)(x + 6)(x + 8) + 16
8. (x2 + x)2 + 4(x2 + x) - 12
9. 4(x2 + 15x + 50)(x2 + 18x + 72) – 3x2
Bài 2 :Tìm x biết:
a) 2x(x-5) - x(3+2x)=26 b) 5x(x-1) = x-1 c) 2(x+5) - x2-5x = 0 	 d) (2x-3)2-(x+5)2=0
e) 3x3 - 48x = 0 	 f) x3 + x2 - 4x = 4
Baứi 3 Chửựng minh ủaỳng thửực:
 a. / 
bieỏt raống 2x = a + b + c
 b. / 
 ; bieỏt raống a + b + c = 2p
Bài 4: Thực hiện phép tính	
Bài 2: Cho biểu thức: 
a) Rút gọn A.
b) Tính giá trị của biểu thức A tại x = 2005.
c) Tìm giá trị của x để A có giá trị bằng – 1002.
Bài 3: Cho biểu thức: 
a) Rút gọn B.
b) Tính giá trị của B biết |x| = 1.
c) Tìm x biết .
d) Tìm các giá trị nguyên của x để B nhận giá trị nguyên.
Bài 4: Cho biểu thức: 
a) Rút gọn C.
b) Tính giá trị của biểu thức C tại các giá trị của x thoả mãn |x - 3| = 1.
Bài 5: Cho biểu thức: 
a) Rút gọn D.
b) Tính giá trị của D tại x = .
c) Tìm giá trị của x để biểu thức D có giá trị bằng 0.
Bài 6: Cho biểu thức: 
a) Rút gọn E.
b) Tính giá trị của biểu thức E tại x =.
c) Tìm các giá trị nguyên của x để biểu thức E nhận giá trị nguyên.
Bài 7: Cho biểu thức: 
a) Rút gọn G.
b) Tính giá trị của G biết x(x – 2) = 0.
c) Tìm giá trị nguyên của x để biểu thức G nhận giá trị nguyên. 
Bài 1: Giải phương trình sau 
1/ 14x-(2x+7) = 3x+(12x-13) ; 2/ 2x+33 – 3(12-x) = 9 +2(x+3)
3/ 2,5(x-3) -3(x- 4) = 9 – (5x-15,3) ; 4/ 3x-+5(x-2) = (x+1)
Bài 2: Giải phương trình sau
1/ 	 ; 2/ 
3/ ; 4/ 
5/ 
Bài 3: Giải phương trình sau
1) 	2) 
3) 	4) 
5) 	6) 
7) 
Bài 4: Giải phương trình sau
a/ (x+5)(x-1) = 2x(x-1)
b/ 5(x+3)(x-2) -3 (x+5)(x-2) = 0
c/ 2x3+ 5x2 -3x = 0.
d/ (x-1) 2 +2 (x-1)(x+2) +(x+2)2 =0
e/ x2 +2x +1 =4(x2-2x+1)
Bài 5: Giải phương trình sau
Bài 6: Giải phương trình sau
Dạng: Giải bài toán bằng cách lập phương trình
Bài 1:Tìm 2 số biết tổng của chúng bằng 63 , hiệu của chúng là 9 ?
Bài 2: Tìm 2 số biết tổng của chúng là 100. Nếu tăng số thứ nhất lên 2 lần và cộng thêm vào số thứ hai 5 đơn vị thì số thứ nhất gấp 5 lần số thứ hai.
Bài 3: Hai thùng dầu ,thùng này gấp đôi thùng kia ,sau khi thêm vào thùng nhỏ 15 lít ,bớt ở thùng lớn 30 lít thì số dầu thùng nhỏ bằng số dầu ở thùng lớn.Tính số dầu ở mỗi thùng lúc ban đầu?
Bài 4: Một khu vườn hình chữ nhật có chu vi 82 m, chiều dài hơn chiều rộng 11m. Tính chiều dài và chiều rộng?
Bài 5 : Có 12% số học sinh trong lớp không làm được bài 32% làm sai , còn lại 28 em làm đúng .Tính số học sinh trong lớp 
Bài 6: Cả 3 thùng có tất cả 64,2 kg đường thùng thứ hai có số đường bằng số đường thùng thùng 1, thùng thứ ba có số đường bằng 42,5% số đường thùng 2.Tính số đường mỗi thùng ?
toán có nội dung số học 
Bài 1: Tìm số có 2 chữ số biết rằng tổng 2 chữ số là 16 , nếu đổi chỗ 2 chữ số cho nhau ta được số mới nhỏ hơn số ban đầu 18 đơn vị .
Bài 2 : Cho một số có hai chữ số tổng hai chữ số bằng là 7 . Nếu viết theo thứ tự 
ngược lại ta được số mới lớn hơn số đã cho 27 đơn vị . Tìm số đã cho ?
toán chuyển động
Bài 1: Hai xe khởi hành cùng một lúc đi từ hai địa điểm A và B cách nhau 70 km và sau một giờ thì gặp nhau. Tính vận tóc của mỗi xe , biết rằng vận tốc xe đi từ A lớn hơn xe đi từ B 10 km/h . 
Bài 2: Một xe ô tô đi từ A đến B với vận tốc 50 km/h và sau đó quay trở về với vận tốc 40 km/h. Cả đi lẫn về mất 5h 24 phút . Tính chiều dài quãng đường AB ?
 Bài 3: Một người đi xe đạp từ A đén B. Một giờ sau, một xe máy cũng đi xe máy từ A đến B và đến B sớm hơn người đi xe đạp 1 h 30’ . Tìm vận tốc của mỗi xe, biết rằng vận tốc của xe máy gấp đôi vận tốc của xe đạp và quãng đường AB dài 80 km.
Bai 1:`Một người đi xe đạp , một người đi xe mỏy , một người đi ụ tụ cựng đi từ A đến B . Họ khởi hành từ A theo thứ tự núi trờn lỳc 6h ; 7h ; 8h . Vận tốc trung bỡnh của họ theo thứ tự trờn là 10km/h ; 30km/h ; 40km/h . Hỏi lỳc ụ tụ ở chớnh giữa vị trớ xe đạp và xe mỏy thỡ ụ tụ đó cỏch A bao nhiờu km.	Đỏp số: 50km.
2) Một ca nụ xuụi dũng từ bến A lỳc 5h 30 phỳt để đến bến B và nghỉ lại đõy 2h15phuts để dỡ hàng , sau đú lại quay về A. Đến A lỳc 13h45 phỳt . Tớnh k/c giữa hai bến A và B biết rằng vận tốc ca nụ khi nước yờn lặng là 24,3km/h và vận tốc dũng nước chảy là 2,7km/h. Đỏp số: 72km.
toán kế hoạch –thực làm
 Bài 1 Một đội đánh cá dự định mỗi tuần đánh bắt 20 tấn cá, nhưng mỗi tuần đã vượt mức 6 tấn nên chẳng những hoàn thành kế hoạch sớm một tuần mà còn vượt mức đánh bắt 10 tấn . Tính mức cá đánh bắt theo kế hoạch ?
 Bài 2 : Theo kế hoạch ,đội sản xuất cần gieo mạ trong 12 ngày .Đến khi thực hiện đội đã nâng mức thêm 7 ha mỗi ngày vì thế hoàn thành gieo mạ trong 10 ngày .Hỏi mỗi ngay đội gieo được bao nhiêu ha và gieo được bao nhiêu ha ?
 Bài 3 : Một xưởng đóng giầy cần phải hoàn thành kế hoạch trong 25 ngày.
Thực tế, xưởng đã vượt mức mỗi ngày 6 đôi nên sau 20 ngày chẳng những hoàn thành kế hoạch mà còn làm thêm được 20 đôi giày. Hổi xưởng phải đóng bao nhiêu đôi giày theo kế hoạch ?
Bài 4 : Một xí nghiệp dệt theo hợp đồng làm trong 20 ngày. Khi làm năng  ... ưa về các phân thức có mẫu bằng 1.
Lời giải: 
Đặt VT = 
 = + 
 = 
 = VP (ĐPCM).
Chú ý. Bài toán trên có thể biến đổi tương tương bằng cách chuyển VP sang VT.
2. Bài toán có điều kiện: 
 Đa số các bài toán nói chung và bài toán chứng minh đẳng thức và quan hệ đại số nói riêng là bài toán có điều kiện ban đầu( hay gọi là giả thiết) Trong quá trình giải toán HS thường băn khoăn không biết sử dụng giả thiết như thế nào cho đúng ?. Đây là một vấn đề nhạy cảm vì vậy cần hình thành cho HS một cái nhìn bao quán trong quá trình giải toán. Sau đây là một số bài toán như thế, qua đó ta có thể rèn luyện kỉ năng vận dụng giả thiết vào giải toán.
Bài toán 1 : Cho ba số a,b,c thoả mãn a+b+c =0. Chứng minh rằng: 
(a2+b2+c2)2= 2(a4+b4+c4)
PP: Ta thấy VT và VP của đẳng thức là các luỹ thừa 2 và 4 vậy thì việc sử dụng GT a+b+c =0 như thế nào để làm xuất hiện các luỹ thừa cần dùng.
 Lời giải: Do a+b+c = 0 nên (a+b+c)2=0
 a2+b2+c2= -( 2ab+2bc+2ac)
 (a2+b2+c2)2= 4(ab+bc+ac)2
 a4+b4+c4 +2a2b2+2b2c2+2a2c2= 4(a2b2+b2c2+a2c2 +2ab2c+2a2bc+2abc2)
 a4+b4+c4 = 2a2b2+2b2c2+2a2c2 +8abc(a+b+c) do a+b+c =0 nên
 a4+b4+c4 = 2a2b2+2b2c2+2a2c2= 2(a2b2+b2c2+a2c2).
 Mặt khác: (a2+b2+c2)2= 4(a2b2+b2c2+a2c2 ) +2abc(a+b+c)
 (a2+b2+c2)2= 4(a2b2+b2c2+a2c2 ) (do a+b+c =0)
 Khi đó: 2(a4+b4+c4 )= (a2+b2+c2)2 (ĐPCM)
Bài toán 2: Cho a2+b2=1 , c2+d2=1, ac+bd=0.Chứng minh rằng: 
ab+cd=0.
PP: Đây là một bài toán sử dụng giả thiết tương đối khó vì HS không biết sử dụng các luỹ thừa 2 như thế nào. Với bài này cần cho HS biết cách sử dụng số 1 hợp lý vào biểu thức cần chứng minh vì ab+cd = ab.1+cd.1 ; cuối cùng là đưa về nhân tử để sử dụng ac+bd=0 .
 Lời giải: Ta có ab+cd= ab(c2+d2)+cd(a2+b2)
 = ab c2+abd2+cda2+cdb2
 =ac(bc+ad) +bd(ad+bc)
 = (bc+ad)(ac+bd)= 0 (do ac+bd=0)
 Vậy ab+cd=0.
 Bài toán 3: Chứng minh rằng Nếu: thì: 
 (x2+y2+c2)( a2+b2+c2) = (ax+by+cz)2 
PP : Bài toán này có GT là một dãy tỉ số bằng nhau vì vậy cần sử dụng kiến thức tỉ lệ thức để vận dụng vào trong quá trình giải.
Lời giải Đặt = k. Do đó x=ak , y=bk, c=kc.
 VT= (a2+b2+c2)2k2 
 VP= (a2 +b2+c2)2k2 Suy ra: VP=VT
 Vậy (x2+y2+c2)( a2+b2+c2) = (ax+by+cz)2
Bài toán 4: Cho a,b,c là ba số thoả mãn điều kiện a+b+c=1 và a3+b3+c3=1.
 Chứng minh rằng: a2005+b2005+c2005=1.
PP. Đây là bài toán khó đối với HS vì luỹ thừa lớn nên HS thường không biết sử lý như thế nào. Với bài này chúng ta nên dạy cho HS cách phán đoán trước khi giải: Bài này ta có thể dự đoán một trong các số a;b;c bằng 1 cong hai số còn lại bằng 0.
Lời giải: Do a3+b3+c3=1 và a+b+c=1 ta có. a3+b3+c3 = a+b+c
 3(a+b)(b+c)(c+a)=0
 a=-b hoặc b=-c hoặc c=-a 
 Nếu a=-b ta có a2005+b2005+c2005= a2005- a2005+c2005 = c2005= 1 vì a-a+c=1
 Tương tự ta cũng có kết luận như trên 
 Vậy a2005+b2005+c2005=1
Bài toán 5: Cho x+y = a + b và x2+y2=a2+b2 Chứng minh rằng: 
 x2009+y2009 = a2009+b2009 ( Trong đề chọn HSG tỉnh năm 2009)
PP: Đây là một bài toán với yêu cầu chứng minh với số mũ tương đối lớn vì vậy cần hướng dẫn học sinh định hướng trước khi giải là: Sử dụng giả thiết để chỉ ra có các cặp lá hai số đối nhau hược các cặp bằng nhau.
Lời giải: 
 Từ x+y = a + b x-a=b-y
 Từ x2+y2=a2+b2 x2- a2=b2-y2 (x-a)(x+a) = (b-y)(b+y)
 Suy ra (b-y)(x+a) - (b-y)(b+y) = 0 
 (b-y)(x+a-b-y)=0
 b=y hoặc x+a-b-y=0
 Nếu b=y x=a x2009+y2009 = a2009+b2009
 Nếu x+a-b-y=0 x-y = b-a kết hợp với x+y = a + b suy ra x=b y=a 
 x2009+y2009 = a2009+b2009 ( ĐPCM)
Bài toán 6. Cho Chứng minh rằng: 
PP. Bài toán này trước khi làm cần hướng dẫn HS xét xem bài toán xảy ra dấu bằng khi nào?. Bài toán này xảy ra khi ba số a; b; c đôi một đối nhau, chính vì vậy từ giả thiết ta biến đổi tương đương để đưa về dạng (a+b)(b+c)(c+a) = 0
Lời giải:
Ta có: 
 (a+b)(b+c)(c+a) = 0
Suy ra : a=-b; b=-c; c=-a 
Nếu a = -b Ta có 
Tương tự ta cũng có các kết luận như trên với b=-c; c=-a
Vậy 
Mở rộng : Bài toán trên có thể chứng minh với luỹ thừa bậ n ( n lẻ) hoặc chứng minh rằng: sảy ra khi và vhỉ khi a=-b; b=-c; c=-a.
Bài toán 7: a. CMR: Nếu x = by+cz , y = ax+ cz , z= ax+by và x+y+z ≠0.
 Thì 
PP: Trong bài điều kiện tưởng như bình thường x+y+z ≠ 0 thì lại là điều kiện cần xem xét đầu tiên vì nó gợi cho ta việc cộng ba giả thiết đầu lại với nhau. Từ đó kết hợp với mỗi giả thiết để làm xuất hiện 
Lời giải: 
a. Ta có x+y+z = 2(ax+by+cz) . Khi đó: 
 x+y+z = 2(ax + x) = 2x( a+1) 
Tương tự ta có: và 
 Suy ra: = 2
 Vậy 
Bài toán 8: CMR: Nếu va x =y +z thì 
PP. Bài trên đẳng thức yêu cầu chứng minh có luỹ thừa 2 và nó là phân luỹ thừa của một hằng đẳng thức vì vậy để tạo ra nó cần có cái nhìn về GT . Ta có thể tạo ra bằng cách bình phương hai vế của .
Lời giải: Ta có 
 1+ 
 1+ (vì x=y+z)
Vậy 
Bài toán 9: Cho . CMR: 
PP. Bài toán này cũng là một bài toán khó khi các em HS tìm cách tạo ra a2,,trong đẳng thức cần chứng minh. Ta thấy rằng mẫu của GT cũng như dẳng thức cần chứng minh là như nhau nên chúng ta không nên sử lý đối với mẫu mà tạo ra các luỹ thừa bằng cách nhân cả hai vế của GT với (a +b+c)
Lời giải: Ta có 
 Vậy Khi 
Bài toán 10: a. Cho (1) và (2). 
CMR: a+b+c=abc
 b. (1) và (2). CMR: 
PP: Bình phương hai vế của của (1), biến đổi để sử dụng giả thiết (2).
Lời giải: a. Từ (1) ta có 
 =0 ( vì )
 a+b+c=abc (ĐPCM).
Tacó: 
 Mặt khác Nên =0 
 Vậy 
Bài toán 11: Cho a-b ≠ 0 và b-c ≠0. 
 CMR: 
PP: Quy đồng hai vế của giả thiết và của yêu cầu CM để chỉ ra đẳng thức đúng.
Lời giải: Từ a(b-c) = c(a-b) (1)
 Từ 
 a(b-c) = c(a-b) (2)
 Từ (1) và (2) ta có ĐPCM
Bài toán 12: Cho a+b+c=0 ; x+y+z=0 và 
 CMR: ax2+ by2+cz2=0.
PP: Sử dụng giả thiết x+y+z =0 để thay x ,y,z vào biể thức A = ax2+ by2+cz2, đặt nhân tử chung và thy a,b,c ở a+b+c=0 và biểu thức 
Lời giải: Từ x+y+z =0 Ta có: x2 = (y+z)2; y2= (x+z)2; z2= (x+y)2
 Đặt A = ax2+ by2+cz2 
 = a(y+z)2+b(x+z)2+c(x+y)2
 = ay2 +2axy+az2 + bx2+2bxz+bz2+cx2+2cxy+cy2
 = x2(b+c)+y2(a+c)+z2(a+b)+2(axy+bxz+cxy)
Mà a+b+c=0 nên b+c=-a; a+c=-b; a+b=-c
 Khi đó: A = -ax2 –by2 – cz2 +2(axy+bxz+cxy)
 Mặt khác: axy+bxz+cxy = 0.
Suy ra A = -ax2 –by2 – cz2= ax2+ by2+cz2
 ax2+ by2+cz2=0.
Vậy ax2+ by2+cz2=0.
Bài toán 13: Cho CMR: x=y hoặc y=z hoặc x=z hoặc x2y2z2=1.
PP: Đối với các bài kiểu này thì chúng ta cần hướng HS đến việc sử dụng giả thiết để biến đổi về dạng tích (x-y)(y-z)(z-x)(x2y2z2-1) = 0
Lời giải: = x+
 x-y = =
 Tương tự ta có: y-z= ; z-x = 
 Suy ra (x-y)(y-z)(z-x) = 
 (x-y)(y-z)(z-x)(x2y2z2-1) = 0
 x=y hoặc y=z hoặc z=x hoặc x2y2z2=1. (ĐPCM).
Bài tập đề nghị: 
Cho . CMR: 
CMR: Nếu (a2-bc)(b-abc) = (b2- ac)(a-abc) và a,b,c, a-b khác 0 
 Thì 
CMR: Nếu x+y+z=a và thì tồn tại một trong ba số
 bằng a.
CMR:Nếu m=a+b+c thì:
 ( am+bc)(bm+ac)(cm+ab)= (a+b)2(b+c)2(c+a)2
CMR: Nếu a+b+c=0 và abc≠ 0 thì: 
3. Một số bài toán về quan hệ đại số trong toán học:
 Trong dạy học môn toán đặc biệt là đại số các đối tượng đại số luôn có mối quan hệ nhất định nào đó, việc chứng minh được mối quan hệ đó không phải là khó nhưng cũng không phải là dễ đối với một số đối tượng HS của chúng ta. Việc cung cấp cho HS đặc biệt là HS khá, giỏi là rất cần thiết không những lớp 8 mà còn là hành trang cho HS sau này. Với một lượng bài không nhiều nhưng tôi tin rằng sau khi các em làm xong các bài toán sau thì có thể vững tin vào các bài khác khi bắt gặp.
 Về phương pháp chung với các bài toán loại này thường là: áp dụng hợp lý giả thiết của bài toán để đưa về dạng tích hoặc là tổng các bình phương, cũng có thể sử dạng điều kiện sảy ra dấu bằng trong bất đẳng thức.
Bài toán 1: CMR: Nếu x2+y2+z2=xy+yz+xz thì x=y=z.
 PP: Bài toán này để suy ra được x=y=z ta cần biến đổi giả thiết về dạng tổng các bình phương.
Lời giải: Ta có: x2+y2+z2=xy+yz+xz
 2x2+2y2+2z2=2xy+2yz+2xz
 2x2-2y2-2z2-2xy-2yz-2xz = 0
 (x-y)2+(y-z)2+(z-x)2 = 0
 Do (x-y)2≥ 0 ; (y-z)2 ≥ 0 ; (z-x)2 ≥ 0 Nên: (x-y)2+(y-z)2+(z-x)2 = 0
 Vậy nếu x2+y2+z2=xy+yz+xz thì x=y=z.
Bài toán 2: Cho a. b,c là ba số dương. CMR: (a+b)(b+c)(c+a) = 8abc khi và chỉ khi a=b=c.
PP: Ta biến đổi tương đương giả thiết để đưa về dạng tổng các bình phương, nhưng bài này ta sử dụng bất đẳng thức (x+y)2≥4xy thì được kết quả dễ dàng hơn.
Lời giải: Do a,b,c là ba số dương nên ta có: 
 (a+b)2 ≥ 4ab
 (b+c)2 ≥ 4bc
 (c+a)2 ≥ 4ac
 Suy ra (a+b)2(b+c)2(c+a)2 ≥ 64a2b2c2
 (a+b)(b+c)(c+a) ≥ 8abc Dấu bằng xảy ra khi và chỉ khi a=b=c.
 Vậy (a+b)(b+c)(c+a) = 8abc khi và chỉ khi a=b=c.
Bài toán 3: CMR: Trong ba số a,b,c tồn tại hai số bằng nhau. Nếu:
 a2(b-c)+b2(c-a)+c2(a-b) = 0
PP: Đưa về dạng tích đối với a,b,c.
Lời giải: Ta có: a2(b-c)+b2(c-a)+c2(a-b) = 0
 a2(b-c) + b2c – b2a +c2a-c2b =0 
 a2(b-c) +bc(b-c) – a(b2-c2) =0 
 (b-c)( a2+bc – ab-ac) = 0 
 (b-c)( a-b)(c-a) = 0 
 b-c=0 hoặc a-b=0 hoặc c-a=0 
 b=c hoặc a=b hoặc c=a 
Vậy Trong ba số a,b,c tồn tại hai số bằng nhau.
Bài toán 4: CMR: Nếu ba số x,y,z là ba số dương thoả mãn 
 x3+y3+z3=3xyz thì x=y=z.
PP: Bài toán này để suy ra được x=y=z ta cần biến đổi giả thiết về dạng tổng các bình phương.
Lời giải: Ta có: x3+y3+z3=3xyz 
 x3+y3+z3-3xyz = 0
 (x+y+z)(x2+y2+z2-xy-yz-zx)=0
Do x,y,z dương nên x+y+z dương khi đó 
 (x+y+z)(x2+y2+z2-xy-yz-zx)=0
 x2+y2+z2-xy-yz-zx = 0
 2x2-2y2-2z2-2xy-2yz-2xz = 0
 (x-y)2+(y-z)2+(z-x)2 = 0
 Do (x-y)2≥ 0 ; (y-z)2 ≥ 0 ; (z-x)2 ≥ 0 Nên: (x-y)2+(y-z)2+(z-x)2 = 0
Vậy: Nếu ba số x,y,z là ba số dương thoả mãn 
 x3+y3+z3=3xyz thì x=y=z.
Bài toán 5: CMR: Nếu a4+b4+c4 +d4= 4abcd và a,b,c,d là các số dương 
 Thì: a=b=c=d.
PP: Bài toán này để suy ra được a=b=c= d ta cần biến đổi giả thiết về dạng tổng các bình phương.
Lời giải: Ta có: a4+b4+c4 +d4= 4abcd
 a4+b4+c4 +d4- 4abcd = 0
 (a4+b4 – 2a2b2) +( c4 +d4- 2c2d2) +( 2a2b2 +2c2d2
 ( a2-b2)2 +( c2-d2)2 +2(ab-cd)2=0
Do ( a2-b2)2 ≥0, ( c2-d2) ≥0, 2(ab-cd)2≥0 Nên: 
 ( a2-b2)2 +( c2-d2)2 +2(ab-cd)2=0
( a2-b2)2 =0, ( c2-d2)2 =0, 2(ab-cd)2=0
 a2-b2=0 và c2-d2và ab-cd a= b, c=d, ab=cd.
 a=b=c=d 
Vậy a=b=c=d.
Bài toán 6: Cho a,b,c là các số hữu tỉ thoả mãn điều kiện ab+bc+ca=1.
 CMR: (1+a2)(1+b2)(1+c2) là bình phương của một số hữu tỉ?
PP: Thay 1= ab +bc+ca vào (1+a2),(1+b2),(1+c2) để phân tích thành nhân tử. 
Lời giải: Do ab+bc+ca=1 
 Nên 1+a2=ab+bc+ca+a2 = (a+b)(a+c)
 1+b2= ab+bc+ca+b2=( a+b)(b+c)
 1+c2 = ab+bc+ca+c2= (b+c)(c+a)
Khi đó: (1+a2)(1+b2)(1+c2) = (a+b)2(b+c)2(c+a)2= 
Vậy (1+a2)(1+b2)(1+c2) là bình phương của một số hữu tỉ.
Bài tập 7: Cho . CMR: ba số a,b,c tồn tại hai số bằng nhau.
PP: Phân tích giả thiết về dạng tích.
Lời giải: Ta có 
 a2c +b2a+c2b =b2c+c2a+a2b
 a2c +b2a+c2b - b2c-c2a-a2b =0
 (a2c - c2a) +( b2a - b2c) – (a2b- c2b) = 0
 ac(a-c) + b2(a-c) – b(a2- c2) = 0
 (a-c)(ac +b2- ab – bc) = 0 
 (a-c)(b-c)(a-b) =0
 a-c =0; b-c = 0; a-b = 0 
 a= c ; b=c; a=b.
Vậy: ba số a,b,c tồn tại hai số bằng nhau.
------------- Hết -------------
(Chúc các em ôn tập tốt)

Tài liệu đính kèm:

  • docDe cuong On tap.doc