Chuyên đề phương trình cơ bản

Chuyên đề phương trình cơ bản

Bai 1. Hy chỉ ra cc phương trình bậc nhất trong cc phương trình sau:

a) 1 + x = 0 b) x + x2 = 0 c) 1 – 2t = 0 d) 3y = 0

e) 0x – 3 = 0 f) (x2 + 1)(x – 1) = 0 g) 0,5x – 3,5x = 0 h) – 2x2 + 5x = 0

Bai 2. Cho hai phương trình: x2 – 5x + 6 = 0 (1)

x + (x – 2)(2x + 1) = 2. (2)

a) Chứng minh hai phương trình cĩ nghiệm chung l x = 2.

b) Chứng minh: x = 3 l nghiệm của (1) nhưng khơng l nghiệm của (2).

c) Hai phương trình đ cho cĩ tương đương với nhau khơng, vì sao ?

Bai 3. Giải cc phương trình sau:

1. a) 7x + 12 = 0 b) 5x – 2 = 0 c) 12 – 6x = 0 d) – 2x + 14 = 0

2. a) 3x + 1 = 7x – 11 b) 2x + x + 12 = 0 c) x – 5 = 3 – x d) 7 – 3x = 9 – x

e) 5 – 3x = 6x + 7 f) 11 – 2x = x – 1 g) 15 – 8x = 9 – 5x h) 3 + 2x = 5 + 2x

3. a) 0,25x + 1,5 = 0 b) 6,36 – 5,2x = 0 c) d)

doc 15 trang Người đăng nhung.hl Lượt xem 1618Lượt tải 2 Download
Bạn đang xem tài liệu "Chuyên đề phương trình cơ bản", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
BÀI TẬP
Hãy chỉ ra các phương trình bậc nhất trong các phương trình sau:
a) 1 + x = 0	b) x + x2 = 0	c) 1 – 2t = 0	d) 3y = 0	
e) 0x – 3 = 0	f) (x2 + 1)(x – 1) = 0	g) 0,5x – 3,5x = 0	h) – 2x2 + 5x = 0 
Cho hai phương trình: 	x2 – 5x + 6 = 0	(1)
x + (x – 2)(2x + 1) = 2.	(2)
Chứng minh hai phương trình cĩ nghiệm chung là x = 2.
Chứng minh: x = 3 là nghiệm của (1) nhưng khơng là nghiệm của (2).
Hai phương trình đã cho cĩ tương đương với nhau khơng, vì sao ?
Giải các phương trình sau:
1.	a) 7x + 12 = 0	b) 5x – 2 = 0 c) 12 – 6x = 0 d) – 2x + 14 = 0
2.	a) 3x + 1 = 7x – 11	b) 2x + x + 12 = 0	c) x – 5 = 3 – x 	d) 7 – 3x = 9 – x 
e) 5 – 3x = 6x + 7 f) 11 – 2x = x – 1 g) 15 – 8x = 9 – 5x h) 3 + 2x = 5 + 2x
3.	a) 0,25x + 1,5 = 0	b) 6,36 – 5,2x = 0	c) d) 
Chứng tỏ rằng các phương trình sau đây vơ nghiệm:
	a) 2(x + 1) = 3 + 2x	b) 2(1 – 1,5x) + 3x = 0	c) | x | = –1 	d) x2 + 1 = 0
Giải các phương trình sau, viết số gần đúng của nghiệm ở dạng số thập phân bằng cách làm trịn đến hàng phần trăm:
a) 3x – 11 = 0	b) 12 + 7x = 0	c) 10 – 4x = 2x – 3 	e) 5x + 3 = 2 – x 
Xét tính tương đương của các phương trình: 
(1 – x)(x + 2) = 0 	(1)
(2x – 2)(6 + 3x)(3x + 2) = 0 	(2)
(5x – 5)(3x + 2)(8x + 4)(x2 – 5) = 0 	(3)
Khi 	a) Ẩn số x chỉ nhận những giá trị trên tập N. 
	b) Ẩn số x chỉ nhận những giá trị trên tập Z.
	c) Ẩn số x chỉ nhận những giá trị trên tập Q.
	d) Ẩn số x chỉ nhận những giá trị trên tập R.
Trong các cặp phương trình sau hãy chỉ ra các cặp phương trình tương đương, khơng tương đương. Vì sao ?
a) 3x + 2 = 1 	và 	x + 1 = 
b) x + 2 = 0	và 	(x + 2)(x – 1) = 0
c) x + 2 = 0	và 	(x + 2)(x2 + 1) = 0 
d) x2 – 4 + 	và	x2 – 4 = 0	
e) 2x + 3 = x + 5	và	2x + 3 + = x + 5 + 
f) 2x + 3 = x + 5	và	2x + 3 + = x + 5 + 
g) x + 7 = 9	và	x2 + x + 7 = 9 + x2
h) (x + 3)3 = 9(x + 3)	và	(x + 3)3 – 9(x + 3) = 0 
i) 0,5x2 – 7,5x + 28 = 0 	và	x2 – 15x + 56 = 0
j) 2x – 1 = 3	và	x(2x – 1) = 3x
Tìm giá trị của k sao cho:
Phương trình: 2x + k = x – 1 	cĩ nghiệm x = – 2. 
Phương trình: (2x + 1)(9x + 2k) – 5(x + 2) = 40 	cĩ nghiệm x = 2 
Phương trình: 2(2x + 1) + 18 = 3(x + 2)(2x + k) 	cĩ nghiệm x = 1
Phương trình: 5(m + 3x)(x + 1) – 4(1 + 2x) = 80	cĩ nghiệm x = 2
Tìm các giá trị của m, a và b để các cặp phương trình sau đây tương đương:
mx2 – (m + 1)x + 1 = 0	và	(x – 1)(2x – 1) = 0
(x – 3)(ax + 2) = 0	và	(2x + b)(x + 1) = 0
Giải các phương trình sau:
1. 	a)	3x – 2 = 2x – 3	b)	3 – 4y + 24 + 6y = y + 27 + 3y
	c)	7 – 2x = 22 – 3x	d)	8x – 3 = 5x + 12
	e)	x – 12 + 4x = 25 + 2x – 1	f)	x + 2x + 3x – 19 = 3x + 5
	g)	11 + 8x – 3 = 5x – 3 + x	h)	4 – 2x + 15 = 9x + 4 – 2x
2.	a)	5 – (x – 6) = 4(3 – 2x)	b)	2x(x + 2)2 – 8x2 = 2(x – 2)(x2 + 2x + 4) 
	c)	7 – (2x + 4) = – (x + 4)	d)	(x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3
	e)	(x + 1)(2x – 3) = (2x – 1)(x + 5)	f)	(x – 1)3 – x(x + 1)2 = 5x(2 – x) – 11(x + 2)
	g)	(x – 1) – (2x – 1) = 9 – x	h)	(x – 3)(x + 4) – 2(3x – 2) = (x – 4)2	
	i) 	x(x + 3)2 – 3x = (x + 2)3 + 1	j)	(x + 1)(x2 – x + 1) – 2x = x(x + 1)(x – 1) 
3.	a)	1,2 – (x – 0,8) = –2(0,9 + x)	b)	3,6 – 0,5(2x + 1) = x – 0,25(2 – 4x) 
c)2,3x – 2(0,7 + 2x) = 3,6 – 1,7x d) 0,1 – 2(0,5t – 0,1) = 2(t – 2,5) – 0,7
e)3 + 2,25x +2,6 = 2x + 5 + 0,4x f)	5x + 3,48 – 2,35x = 5,38 – 2,9x + 10,42
4. 	a)	b) 	
	c)	d) 	
	e)	f) 	
	g)	h) 	
	i) 	k) 	
	m) 	n) 	
	p) 	q) 	
	r) 	s) 	
	t) 	u) 	
	v)	w)	
5.	a)	b)	
	c)	d)	
	e)	f)	
	g)	h)	
Tìm giá trị của x sao cho các biểu thức A và B cho sau đây cĩ giá trị bằng nhau:
A = (x – 3)(x + 4) – 2(3x – 2)	và	B = (x – 4)2
A = (x + 2)(x – 2) + 3x2	và 	B = (2x + 1)2 + 2x
A = (x – 1)(x2 + x + 1) – 2x	và 	B = x(x – 1)(x + 1)
A = (x + 1)3 – (x – 2)3	và	B = (3x –1)(3x +1).
Giải các phương trình sau:
a) 	
b) 
c) 
Giải các phương trình sau:
a) 	b) 
Giải các phương trình sau:
a) 	b) 
c) 	d) 
e) 	f) 
g) 	h) 
i) 
j) 
(Đề thi Học sinh giỏi lớp 8 tồn quốc năm 1978)
Tìm điều kiện xác định của các phương trình sau:
	a)	3x2 – 2x = 0	b)	
	c)	d)	
	e)	f)	
Giải các phương trình sau:
1.	a) 	b)	c)	
	d)	e)	f)	
	g)	h)	
2.	a) 	b) 	
	c) 	d) 	
	e) 	f)	
	i)	j)	
3.	a)	b)	
	c)	d)	
	e)	f) 	
	g)	h) 	
	i)	j) 	
	k)	l) 	
	m)	n)	
	o)	p)	
4.	a)	b)	
	c)	d)	
	e)	f)	
	g)	h)	
	i)	j)	
Giải các phương trình sau:
	a)	b)	
	c)	d)	
	e)	f)	
	g)	h)	
	i)	j)	
	k)	l)	
	m) 	n)	
Giải các phương trình sau:
a) 	b) 
c) 	d) 
Tìm các giá trị của a sao cho mỗi biểu thức sau cĩ giá trị bằng 2.
	a)	b)	
	c)	d)	
Tìm x sao cho giá trị của hai biểu thức và bằng nhau.
Tìm y sao cho giá trị của hai biểu thức và bằng nhau.
Cho phương trình (ẩn x): 
Giải phương trình với a = – 3.
Giải phương trình với a = 1.
Giải phương trình với a = 0.
Tìm các giá trị của a sao cho phương trình nhận x = làm nghiệm.
Giải các phương trình sau:
1.	a)	(3x – 2)(4x + 5) = 0	b)	(2,3x – 6,9)(0,1x + 2) = 0
c)	(4x + 2)(x2 + 1) = 0 	d)	(2x + 7)(x – 5)(5x + 1) = 0
e)	(x – 1)(2x + 7)(x2 + 2) = 0	f)	(4x – 10)(24 + 5x) = 0
g)	(3,5 – 7x)(0,1x + 2,3) = 0	h)	(5x + 2)(x – 7) = 0
i)	15(x + 9)(x – 3) (x + 21) = 0	j)	(x2 + 1)(x2 – 4x + 4) = 0
k)	(3x – 2) = 0	l)	(3,3 – 11x)= 0
2.	a)	(3x + 2)(x2 – 1) = (9x2 – 4)(x + 1)	b)	x(x + 3)(x – 3) – (x + 2)(x2 – 2x + 4) = 0
c)	2x(x – 3) + 5(x – 3) = 0	d)	(3x – 1)(x2 + 2) = (3x – 1)(7x – 10)
e)	(x + 2)(3 – 4x) = x2 + 4x + 4	f)	x(2x – 7) – 4x + 14 = 0 
g)	3x – 15 = 2x(x – 5)	h)	(2x + 1)(3x – 2) = (5x – 8)(2x + 1)
i)	0,5x(x – 3) = (x – 3)(1,5x – 1)	j)	(2x2 + 1)(4x – 3) = (x – 12)(2x2 + 1)	
k)	x(2x – 9) = 3x(x – 5)	l)	(x – 1)(5x + 3) = (3x – 8)(x – 1)
m)	2x(x – 1) = x2 - 1	n) 	(2 – 3x)(x + 11) = (3x – 2)(2 – 5x)	
o)	p)	
q)	r)	
s)	(x + 2)(x – 3)(17x2 – 17x + 8) = (x + 2)(x – 3)(x2 – 17x +33)
3.	a)	(2x – 5)2 – (x + 2)2 = 0	b)	(3x2 + 10x – 8)2 = (5x2 – 2x + 10)2 
c)	(x2 – 2x + 1) – 4 = 0 	d)	4x2 + 4x + 1 = x2
e)	(x + 1)2 = 4(x2 – 2x + 1)2	f)	(x2 – 9)2 – 9(x – 3)2 = 0
g)	9(x – 3)2 = 4(x + 2)2	h)	(4x2 – 3x – 18)2 = (4x2 + 3x)2
i)	(2x – 1)2 = 49	j)	(5x – 3)2 – (4x – 7)2 = 0
k)	(2x + 7)2 = 9(x + 2)2	l)	4(2x + 7)2 = 9(x + 3)2
m)	(x2 – 16)2 – (x – 4)2 = 0	n)	(5x2 – 2x + 10)2 = (3x2 + 10x – 8)2
o)	p)	
q)	r)	
4.	a)	3x2 + 2x – 1 = 0	b)	x2 – 5x + 6 = 0
c)	x2 – 3x + 2 = 0	d)	2x2 – 6x + 1 = 0
e)	4x2 – 12x + 5 = 0	f)	2x2 + 5x + 3 = 0
g)	x2 + x – 2 = 0	h)	x2 – 4x + 3 = 0
i)	2x2 + 5x – 3 = 0	j)	x2 + 6x – 16 = 0
5.	a)	3x2 + 12x – 66 = 0	b)	9x2 – 30x + 225 = 0
c)	x2 + 3x – 10 = 0	d)	3x2 – 7x + 1 = 0
e)	3x2 – 7x + 8 = 0	f)	4x2 – 12x + 9 = 0
g)	3x2 + 7x + 2 = 0	h)	x2 – 4x + 1 = 0
i)	2x2 – 6x + 1 = 0	j)	3x2 + 4x – 4 = 0
6.	a)	(x – ) + 3(x2 – 2) = 0	b)	x2 – 5 = (2x – )(x + ) 
7.	a)	2x3 + 5x2 – 3x = 0	b)	2x3 + 6x2 = x2 + 3x
c)	x2 + (x + 2)(11x – 7) = 4	d)	(x – 1)(x2 + 5x – 2) – (x3 – 1) = 0
e)	x3 + 1 = x(x + 1)	f)	x3 + x2 + x + 1 = 0 
g)	x3 – 3x2 + 3x – 1 = 0	h)	x3 – 7x + 6 = 0
i)	x6 – x2 = 0	j)	x3 – 12 = 13x
k)	– x5 + 4x4 = – 12x3	l)	x3 = 4x
Cho phương trình (ẩn x): 4x2 – 25 + k2 + 4kx = 0
	a) Giải phương trình với k = 0	b) Giải phương trình với k = – 3 
	c) Tìm các giá trị của k để phương trình nhận x = – 2 làm nghiệm. 
Cho phương trình (ẩn x): x3 + ax2 – 4x – 4 = 0
Xác định m để phương trình cĩ một nghiệm x = 1.
Với giá trị m vừa tìm được, tìm các nghiệm cịn lại của phương trình. 
Cho phương trình (ẩn x): x3 – (m2 – m + 7)x – 3(m2 – m – 2) = 0
Xác định a để phương trình cĩ một nghiệm x = – 2.
Với giá trị a vừa tìm được, tìm các nghiệm cịn lại của phương trình. 
Cho biểu thức hai biến: f(x, y) = (2x – 3y + 7)(3x + 2y – 1)
Tìm các giá trị của y sao cho phương trình (ẩn x) f(x, y) = 0 nhận x = – 3 làm nghiệm.
Tìm các giá trị của x sao cho phương trình (ẩn y) f(x, y) = 0 nhận y = 2 làm nghiệm.
Cho 2 biểu thức: và .
Hãy tìm các giá trị của m để hai biểu thức ấy cĩ giá trị thỏa mãn hệ thức:
	a) 2A + 3B = 0	b) AB = A + B
Dùng máy tính bỏ túi để tính giá trị gần đúng các nghiệm phương trình sau, làm trịn đến chữ số thập phân thứ ba.
	a) 	b) 
	c) 	d) 
	e) 	f) 
Bài tốn cổ: “ Ngựa và La đi cạnh nhau càng chở vật nặng trên lưng. Ngựa than thở về hành lý quá nặng của mình. La đáp: “Cậu than thở nỗi gì ? Nếu tơi lấy của cậu một bao thì hành lý của tơi nặng gấp đơi của cậu. Cịn nếu cậu lấy của tơi một bao thì hành lý của cậu mới bằng của tơi”. Hỏi Ngựa và La mỗi con mang bao nghêu bao ? 
Năm 1999, bố 39 tuổi, con 9 tuổi. Hỏi năm nào thì tuổi bố gấp 3 lần tuổi con ? 
Năm nay, tuổi mẹ gấp 3 lần tuổi Phương. Phương tính rằng 13 năm nữa thì tuổi mẹ chỉ cịn gấp 2 lần tuổi của Phương thơi. Hỏi năm nay Phương bao nhiêu tuổi ? 
Ơng của Bình hơn Bình 58 tuổi. Nếu cộng tuổi của bố Bình và hai lần tuổi của Bình thì bằng tuổi của ơng và tổng số tuổi của cả ba người là 130. Hãy tính tuổi của Bình.
An hỏi Bình: “Năm nay cha mẹ của anh bao nhiêu tuổi ?” Bình trả lời: “Cha tơi hơn mẹ tơi 4 tuổi. Trước đây khi tổng số tuổi của bố và mẹ tơi là 104 tuổi thì tuổi của 3 anh em chúng tơi là 14, 10 và 6. Hiện nay tổng số tuổi của cha mẹ tơi gấp 2 lần tổng số tuổi của 3 anh em chúng tơi”. Tính xem tuổi của cha và mẹ Bình là bao nhiêu ? 
Tìm hai số, biết tổng của hai số bằng 65 và hiệu của chúng là 11.
Tìm hai số, biết tổng của hai số bằng 75 và số này gấp đơi số kia.
Một số tự nhiên lẻ cĩ hai chữ số và chia hết cho 5. Hiệu của số đĩ và chữ số hàng chục của nĩ bằng 68. Tìm số đĩ.
Tìm một phân số cĩ tử nhỏ hơn mẫu 22 đơn vị, biết rằng nếu thêm 5 đơn vị vào tử và bớt 2 đơn vị ở mẫu thì được phân số mới bằng phân số . Tìm phân số đã cho.
Tìm một phân số cĩ tử nhỏ hơn mẫu 11 đơn vị, biết rằng nếu thêm 3 đơn vị vào tử và bớt 4 đơn vị ở mẫu thì được phân số mới bằng phân số . Tìm phân số đã cho.
Mẫu số của một phân số lớn hơn tử số của nĩ là 3 đơn vị. Nếu tăng cả tử và mẫu của nĩ thêm 2 đơn vị thì được phân số mới bằng phân số .
Tìm một phân số nhỏ hơn 1 cĩ tổng của tử và mẫu là 32, biết rằng nếu tăng mẫu thêm 10 đơn vị và giảm tử đi một nửa thì được phân số mới bằng phân số .
Tìm 2 số nguyên, biết hiệu của 2 số đĩ là 99. Nếu chia số bé cho 3 và số lớn cho 11 thì thương thứ nhất hơn thương thứ hai 7 đơn vị. Biết các phép chia nĩi trên là các phép chia hết.
Tìm 2 số nguyên, biết tỉ số giữa số thứ nhất và số thứ hai bằng . Nếu chia số thứ nhất cho 9 và chia số thứ hai cho 6 thì thương thứ nhất bé hơn thương thứ hai là 3 đơn vị. Biết rằng các phép chia nĩi trên là các phép chia hết.
Tìm 4 số tự nhiên cĩ tổng 2007. Biết rằng nếu số I bớt đi 2, số II thêm 2, số III chia cho 2 và số IV nhân với 2 thì được kết quả bằng nhau. Tìm 4 số đĩ.
Tìm số tự nhiên cĩ hai chữ số, biết rằng nếu viết thêm một chữ số 2 vào bên trái và một chữ số 2 vào bên phải số đĩ thì ta được một số lớn gấp 153 lần số ban đầu.
Tìm một số cĩ hai chữ số. Biết tổng hai chữ số là 10 và nếu đổi chỗ hai chữ số cho nhau thì được một số mới lớn hơn số cần tìm là 18 đơn vị.
Tìm một số cĩ hai chữ số. Nếu thêm chữ số 5 ... tàu, biết rằng hai ga cách nhau 319km.
Một đồn tàu hỏa từ Hà Nội đi Tp. Hồ Chí Minh. 1 giờ 48 phút sau, một đồn tàu khác khởi hành từ Nam Định cũng đi Tp. Hồ Chí Minh với vận tốc nhỏ hơn vận tốc của đồn tàu thứ nhất là 5km/h. Hai đồn tàu gặp nhau (tại một ga nào đĩ) sau 4 giờ 48 phút kể từ lúc đồn tàu thứ nhất khởi hành. Tính vận tốc mỗi đồn tàu, biết rằng ga Nam Định nằm trên đường từ Hà Nội đi Tp. Hồ Chí Minh và cách ga Hà Nội là 87km.
Ơtơ I đi từ A đến B. Nửa giờ sau, ơtơ II đi từ B đến A với vận tốc gấp rưỡi vận tốc ơtơ I. Sau đĩ 45 phút hai ơtơ gặp nhau. Tính vận tốc của mỗi ơtơ, biết quãng đường AB dài 95km.
Ơtơ I đi từ tỉnh A đến tỉnh B với vận tốc 40km/h. Sau đĩ 1 giờ, ơtơ II đi từ tỉnh B đến tỉnh A với vận tốc 65km/h. Hai ơtơ gặp nhau khi ơtơ I mới đi được quãng đường AB. Tính quãng đường AB.
Lúc 6 giờ một ơtơ khởi hành từ A. Lúc 7 giờ 30 phút, ơtơ II cũng khởi hành từ A với vận tốc lớn hơn vận tốc ơtơ I là 20km/h và gặp ơtơ I lúc 10 giờ 30 phút. Tính vận tốc mỗi ơtơ. 
Một người đi xe dạp từ A đến B. Lúc đầu, trên đoạn đường đá, người đĩ đi với vận tốc 10km/h. Trên đoạn đường cịn lại là đường nhựa, dài gấp rưỡi đoạn đường đá, người đĩ đi với vận tốc 15km/h. Sau 4 giờ người đĩ đến B. Tính độ dài quãng đường AB. 
Hai ơtơ cùng khởi hành từ Lạng Sơn về Hà Nội, quãng đường dài 163km. Trong 43km đầu, hai xe cĩ cùng vận tốc. Nhưng sau đĩ chiếc xe thứ nhất tăng vận tốc lên gấp 1,2 lần vận tốc ban đầu, trong khi chiếc xe thứ hai vẫn duy trì vận tốc cũ. Do đĩ xe thứ nhất đã đến Hà Nội sớm hơn xe thứ hai 40 phút. Tính vận tốc ban đầu của hai xe. 
Một xe tải đi từ A đến B với vận tốc 50km/h. Đi được 24 phút thì gặp đường xấu nên vận tốc trên quãng đường cịn lại giảm cịn 40km/h. Vì vậy đã đến nơi chậm mất 18 phút. Tính quãng đường AB.
Anh Nam đi xe đạp tờ A đến B với vận tốc 12km/h. Đi được 6km, xe đạp hư, anh Nam phải đi bằng ơtơ và đã đến B sớm hơn dự định 45 phút. Tính quãng đường AB, biết vận tốc của ơtơ là 30km/h. 
Hai ơtơ khởi hành cùng lúc ngược chiều nhau và gặp nhau sau 4 giờ. Ơtơ I đi từ A với vận tốc bằng vận tốc của ơtơ II đi từ B. Hỏi mỗi ơtơ đi cả quãng đường AB thì mất bao lâu ?
Một ơtơ đi từ A đến B với vận tốc 60km/h và quay từ B về A với vận tốc 40km/h. Tính vận tốc trung bình của ơtơ.
Một ơtơ đi từ A đến B với vận tốc 48km/h. Nhưng sau khi đi được một giờ với vận tốc ấy, ơtơ bị tàu hỏa chắn đường 10 phút. Do đĩ để kịp đến B đúng thời gian đã định, người đĩ phải tăng vận tốc thêm 6km/h. Tính quãng đường AB.
Một người đi từ A đến B với vận tốc 25km/h. Lúc về người đĩ đi với vận tốc 30km/h nên thời gian về ít hơn thời gian đi là 20 phút. Tính quãng đường AB.
Một canơ xuơi dịng từ A đến B mất 4 giờ và ngược dịng từ B về A mất 5 giờ. Tìm đoạn đường AB, biết vận tốc của dịng nước là 2km/h. 
Lúc 7 giờ sáng, một canơ xuơi dịng từ A đến B cách nhau 36km, rồi ngay lập tức quay trở về và đến A lúc 11 giờ 30 phút. Tính vận tốc của canơ khi xuơi dàng, biết vận tốc của dịng nước là 6km/h. 
Một đội thợ mỏ lập kế hoạch khai thác than, theo đĩ mỗi ngày phải khai thác được 50 tấn than. Khi thực hiện, mỗi ngày đội khai thác được 57 tấn than. Do đĩ, đội khơng những đã hồn thành kế hoạch trước một ngày mà cịn vượt mức 13 tấn than. Hỏi theo kế hoạch, đội phải khai thác bao nhiêu tấn than ? 
Một xí nghiệp ký hợp đồng dệt một số tấm thảm len trong 20 ngày. Do cải tiến kĩ thuật, năng suất dệt của xí nghiệp đã tăng 20%. Bởi vậy, chỉ trong 18 ngày, khơng những xí nghiệp đã hồn thành số thảm cần dệt mà cịn dệt thêm được 24 tấm nữa. Tính số tấm thảm len mà xí nghiệp phải dệt theo hợp đồng. 
Một đội sản xuất dự định phải làm một số dụng cụ trong 30 ngày. Do mỗi ngày đã vượt năng suất so với dự định 10 dụng cụ nên khơng những đã làm thêm được 20 dụng cụ mà tổ đĩ cịn làm xong trước thời hạn 7 ngày. Tính số dụng cụ mà tổ sản xuất đĩ phải làm theo kế hoạch.
Một đội sản xuất dự định phải làm 1500 sản phẩm trong 30 ngày. Do mỗi ngày đã vượt năng suất so với dự định 15 sản phẩm. Do đĩ đội đã khơng những đã làm thêm được 255 sản phẩm mà cịn làm xong trước thời hạn. Hỏi thực tế đội sản xuất đã rút ngắn được bao nhiêu ngày ?
Hai vịi nước cùng chảy vào một bể thì sau 2 giờ bể đầy. Mỗi giờ lượng nước vịi I chảy được bằng lượng nước chảy được của vịi II. Hỏi mỗi vịi chảy riêng trong bao lâu thì đầy bể?
Một vịi nước chảy vào bể khơng cĩ nước. Cùng lúc đĩ, một vịi chảy từ bể ra. Mỗi giờ lượng nước chảy ra bằng lượng nước chảy vào. Sau 5 giờ, nước trong bể đạt tới dung tích bể. Hỏi nếu bể khơng cĩ nước và chỉ mở vịi chảy vào thì trong bao lâu thì đầy bể ?
Hai người cùng làm một cơng việc trong 3 giờ 20 phút thì xong. Nếu người I làm 3 giờ và người II làm 2 giờ thì tất cả được cơng việc. Hỏi mỗi người làm một mình trong bao lâu thì xong cơng việc đĩ ?
Bài tốn cổ: 	Một đàn em nhỏ đứng bên sơng
To nhỏ bàn nhau chuyện chia bịng
Mỗi người năm quả thừa năm quả
Mỗi người sáu quả một người khơng
Hỏi người bạn trẻ đang dừng bước:
Cĩ mấy em thơ, mấy quả bịng ?
Đầu năm học một tổ học sinh được mua một số sách vở, phải trả 72.000đ. Nếu bớt đi 3 người thì mỗi người cịn lại phải trả thêm 4000đ. Hỏi tổ cĩ bao nhiêu người ?
CÁC ĐỀ ƠN TẬP
ĐỀ 1
LÝ THUYẾT
Trong các câu sau câu nào đúng, câu nào sai ?
Hai phương trình vơ nghiệm thì tương đương nhau.
Hai ph/trình tương đương nhau trên tập hợp số Q thì cũng tương đương nhau trên tập R.
Giá trị của số cĩ hai chữ số là: = 10b + a.
A(x) . B(x) ¹ 0 Û A(x) ¹ 0 hoặc B(x) ¹ 0
Khi chuyển chia 2 vế của một phương trình với một biểu thức cĩ chứa ẩn thì ta được một phương trình mới tương đương với phương trình đã cho.
Giá trị của một phân thức được xác định khi mẫu thức khác 0 và tử thức bằng 0.
Chọn câu đúng:
Một phương trình bậc nhất cĩ thể:
Vơ nghiệm.
Luơn luơn cĩ một nghiệm duy nhất.
Cĩ vơ số nghiệm.
Cĩ thể vơ nghiệm, cĩ thể cĩ một nghiệm duy nhất và cũng cĩ thể cĩ vơ số nghiệm.
Chỉ cĩ một nghiệm là x = – 4. 
BÀI TẬP
Giải các phương trình sau:
a) 	– 6(1,5 – 2x) = 3(–15 + 2x)	b)	
c)	d)	
d)	(x2 – 4) + (x – 2)(3 – 2x) = 0
Cho phương trình: 3x2 + 7x + m = 0 cĩ một trong các nghiệm bằng 1. Xác định số m và tìm nghiệm cịn lại.
Tìm một số cĩ hai chữ số. Biết tỉ số giữa chữ số hàng đơn vị và chữ số hàng chục là . Nếu viết thêm chữ số 0 vào giữa hai chữ số thì được số mới lớn hơn số đã cho 540 đơn vị.
ĐỀ 2
LÝ THUYẾT
Trong các câu sau câu nào đúng, câu nào sai ?
Hai phương trình tương đương nhau thì cùng vơ nghiệm.
Phương trình ax = b luơn cĩ một nghiệm duy nhất là .
Phương trình 0x = 0 cĩ tập hợp nghiệm là S = Ỉ. 
Giá trị của số cĩ hai chữ số là: = 10a + b. 
Khi chuyển vế một hạng tử từ vế này sang vế kia thì ta được một phương trình mới tương đương với phương trình đã cho.
Một phân thức cĩ giá trị bằng 0 khi tử thức bằng khơng và mẫu thức khác 0.
Chọn câu đúng:
Cho phương trình: . Điều kiện xác định của phương trình này là:
x ¹ – 1 và x ¹ 1 và x ¹ 2.
x ¹ 1 hoặc x ¹ 2.
x ¹ – 1 hoặc x ¹ 1 hoặc x ¹ 2.
x ¹ 1 và x ¹ 2.
BÀI TẬP
Giải các phương trình sau:
a)	3 – 4x(25 – 2x) = 8x2 + x – 300	b)	
c)	d)	
d)	(2x – 1)2 + (2 – x)(2x – 1) = 0
Cho phương trình: 0,1x2 – x + k = 0 cĩ một trong các nghiệm bằng – 1. Xác định số k và tìm nghiệm cịn lại.
Chu vi hình vuơng thứ I lớn hơn chu vi hình vuơng thứ II là 12cm, cịn diện tích thì lớn hơn 135m2. Tính cạnh của mỗi hình vuơng.
ĐỀ 3
LÝ THUYẾT
Trong các câu sau câu nào đúng, câu nào sai ?
Nếu phương trình này cĩ nghiệm duy nhất là 1 cịn phương trình kia cĩ một nghiệm là 1 thì hai phương trình đĩ tương đương nhau.
A(x) . B(x) ¹ 0 Û A(x) ¹ 0 và B(x) ¹ 0
Khi nhân 2 vế của một phương trình với một số khác 0 thì ta được một phương trình mới tương đương với phương trình đã cho.
Một phân thức cĩ giá trị bằng 0 khi tử thức bằng khơng hoặc mẫu thức khác 0.
Giá trị của một phân thức được xác định khi mẫu thức khác 0 và tử thức khác 0.
Phương trình 0x = – 2 cĩ tập hợp nghiệm là S = Ỉ.
Phương trình ax + b = 0 (a ¹ 0) luơn cĩ một nghiệm duy nhất là .
Chọn câu đúng:
Cho phương trình: (2x2 + 1)(4x – 3) = (x – 15)(2x2 + 1), nghiệm phương trình này là:
BÀI TẬP
Giải các phương trình sau:
a)	3(2,2 – 0,3x) = 2,6 + (0,1x – 4)	b)	
c)	d)	
e)	4x2 – 1 = (2x + 1)(3x – 5)
Cho phương trình: 15x2 + bx – 1 = 0 cĩ một trong các nghiệm bằng . Xác định số b và tìm nghiệm cịn lại.
Một đội máy cày dự định một ngày cày 40 ha. Khi thực hiện, mỗi ngày cày được 52 ha. Vì vậy, khơng những đã cày xong trước 2 ngày mà cịn cày thêm 4 ha nữa. Tính diện tích ruộng mà đội phải cày theo kế hoạch đã định. 
ĐỀ 4
LÝ THUYẾT
Trong các câu sau câu nào đúng, câu nào sai ?
Hai phương trình tương đương nhau trên tập hợp số N thì cũng tương đương nhau trên các tập Z, Q và R.
Giá trị của một phân thức được xác định khi mẫu thức khác 0.
Một phân thức cĩ giá trị bằng 0 khi tử thức bằng khơng hoặc mẫu thức bằng 0.
Khi chuyển chia 2 vế của một phương trình với một số khác 0 thì ta được một phương trình mới tương đương với phương trình đã cho.
A(x) . B(x) = 0 Û A(x) = 0 hoặc B(x) = 0
Phương trình 0x = 0 cĩ tập hợp nghiệm là S = R.
Chọn câu đúng:
Cho phương trình: (x – 1)(x + 7)(x2 + 2) = 0. Tập hợp nghiệm của phương trình này là:
S = {– 7; – 2; 1}.
S = {– 2;– 1; 7 }.
S = {– 2; 1; 7}}.
S = {– 7; 1}.
BÀI TẬP
Giải các phương trình sau:
a)	(x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3	b)	
c)	d)	
e)	3x(25x + 15) – 35(5x + 3) = 0
Cho 2 biểu thức: và .
Hãy tìm các giá trị của m để tổng hai biểu thức bằng tích của chúng.
Một học sinh mang một số tiền đi mua tập. Nếu mua tập loại 2 sẽ mua được 40 quyển. Nếu mua tập loại 1 thì mua được ít hơn 10 quyển vì mỗi quyển loại 1 đắt hơn mỗi quyển loại 2 là 60 đồng. Tính xem học sinh đĩ đã mang đi bao nhiêu tiền ?
ĐỀ 5
LÝ THUYẾT
Trong các câu sau câu nào đúng, câu nào sai ?
Hai phương trình tương đương nhau trên tập hợp số Z thì cũng tương đương nhau trên các tập Q và R.
Phương trình ax + b = 0 luơn cĩ một nghiệm duy nhất là .
Phương trình 0x = – 2 cĩ tập hợp nghiệm là S = R.
Khi chuyển nhân 2 vế của một phương trình với một biểu thức cĩ chứa ẩn thì ta được một phương trình mới tương đương với phương trình đã cho.
Một phân thức cĩ giá trị bằng 0 khi tử thức bằng khơng và mẫu thức bằng 0.
A(x) . B(x) = 0 Û A(x) = 0 và B(x) = 0
Chọn câu đúng:
Trong hai nghiệm của phương trình: thì nghiệm nhỏ là:
BÀI TẬP
Giải các phương trình sau:
a)	2(7x + 10) + 5 = 3(2x – 3) – 9x	b)	
c)	d)	
e)	(x + 2)(x2 – 3x + 5) = (x + 2)x2
Tìm giá trị của m, biết rằng một trong hai phương trình sau đây nhận x = – 1 làm nghiệm, phương trình cịn lại nhận x = 5 làn nghiệm:
(1 – x)(x2 + 1) = 0 và (2x2 + 7)(8 – mx) = 0
Số sách ở ngăn I bằng số sách ở ngăn thớ II. Nếu lấy bớt 10 quyển ở ngăn II và thêm 20 quyển vào ngăn I thì số sách ở ngăn II bằng số sách ở ngăn I. Hỏi ban đầu mỗi ngăn cĩ bao nhiêu quyển sách ?

Tài liệu đính kèm:

  • docCHUYEN DE PHUONG TRINH CO BAN.doc