1) A = 1 + 32 + 34 + 36 + 38 + . + 3100
2) B = 7 + 73 + 75 + 77 + 79 + . + 799
Giải :
1) A = 1 + 32 + 34 + 36 + 38 + . + 3100 . Vấn đề đặt ra là nhân hai vế của A với số nào để khi trừ cho A thì một loạt các lũy thừa bị triệt tiêu ?.Ta thấy các số mũ liền nhau cách nhau 2 đơn vị nên ta nhân hai vế với 32 , rồi trừ cho A ta được :
32A = 32 + 34 + 36 + 38 + . + 3100 + 3102
A = 1 + 32 + 34 + 36 + 38 + . + 3100
32A – A = 3102 – 1 . Hay A( 32 – 1) = 3102 – 1 . Vậy A = ( 3102 – 1): 8
Từ kết quả này suy ra 3102 chia hết cho 8
2 ) Tương tự như trên ta nhân hai vế của B với 72 rồi trừ cho B , ta được:
72B = 73 + 75 + 77 + 79 + . + 799 + 7101
B = 7 + 73 + 75 + 77 + 79 + . + 799
Chuyên đề bồi dưỡng HSG Toỏn 6-7 : Dãy Số phức tạp Người viết : Tạ Phạm Hải Giỏo viờn Trường THCS Thị trấn Hưng hà – Thỏi bỡnh Bài toán 1 : Tính các tổng sau A = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 B = 1 + 3 + 32 + 33 + 34 + ... + 3100 Giải : 2A = 2 + 22 + 23 + ... + 210 + 211 . Khi đó : 2A – A = 211 – 1 3B = 3 + 32 + 33 + ... + 3100 + 3101. Khi đó : 3B – B = 2B = 3101 – 1 . Vậy B = Ta nghĩ tới bài toán tổng quát là : Tính tổng S = 1 + a + a2 + a3 + ... + an , a ∈ Z+ , a > 1 và n ∈ Z+ Nhân 2 vế của S với a ta có aS = a + a2 + a3 + a4 + ... + an + an+1 . Rồi trừ cho S ta được : aS – S = ( a – 1)S = an+1 – 1 . Vậy : 1 + a + a2 + a3 + ... + an = . Từ đó ta có công thức : an+1 – 1 = ( a – 1)( 1 + a + a2 + a3 + ... + an) . Bài tập áp dụng : Tớnh cỏc tổng sau: c) Chứng minh rằng : 1414 – 1 chia hết cho 3 d) Chứng minh rằng : 20092009 – 1 chia hết cho 2008 Bài toán 2 : Tính các tổng sau A = 1 + 32 + 34 + 36 + 38 + ... + 3100 B = 7 + 73 + 75 + 77 + 79 + ... + 799 Giải : A = 1 + 32 + 34 + 36 + 38 + ... + 3100 . Vấn đề đặt ra là nhân hai vế của A với số nào để khi trừ cho A thì một loạt các lũy thừa bị triệt tiêu ?.Ta thấy các số mũ liền nhau cách nhau 2 đơn vị nên ta nhân hai vế với 32 , rồi trừ cho A ta được : 32A = 32 + 34 + 36 + 38 + ... + 3100 + 3102 A = 1 + 32 + 34 + 36 + 38 + ... + 3100 32A – A = 3102 – 1 . Hay A( 32 – 1) = 3102 – 1 . Vậy A = ( 3102 – 1): 8 Từ kết quả này suy ra 3102 chia hết cho 8 2 ) Tương tự như trên ta nhân hai vế của B với 72 rồi trừ cho B , ta được : 72B = 73 + 75 + 77 + 79 + ... + 799 + 7101 B = 7 + 73 + 75 + 77 + 79 + ... + 799 72B – B = 7101 – 7 , hay B( 72 – 1) = 7101 – 7 . Vậy B = ( 7101 – 7) : 48 Tương tự như trên ta cũng suy ra 7101 – 7 chia hết cho 48 ; 7100- 1 chia hết cho 48 Bài tập áp dụng : Tính các tổng sau : A = 2 + 23 + 25 + 27 + 29 + ... + 22009 B = 1 + 22 + 24 + 26 + 28 + 210 + ... + 2200 C = 5 + 53 + 55 + 57 + 59 + ... + 5101 D = 13 + 133 + 135 + 137 + 139 + ... + 1399 Tổng quỏt : Tớnh * b) , với () c) , với () Bài tập khác : Chứng minh rằng : A = 2 + 22 + 23 + 24 + + 260 chia hết cho 21 và 15 B = 1 + 3 + 32 + 33 + 34+ + 311 chia hết cho 52 C = 5 + 52 + 53 + 54 + + 512 chia hết cho 30 và 31 Bài toỏn 3 : Tớnh tổng A = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10 Lời giải 1 : Nhận xột : Khoảng cỏch giữa 2 thừa số trong mỗi số hạng là 1. Nhõn 2 vế của A với 3 lần khoảng cỏch này ta được : 3A = 3.(1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10) = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + 4.5.(6 - 3) + 5.6.(7 - 4) + 6.7.(8 - 5) + 7.8.(9 - 6) + 8.9.(10 - 7) + 9.10.(11 - 8) = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - + 8.9.10 - 8.9.10 + 9.10.11 = 9.10.11 = 990. A = 990/3 = 330 Ta chỳ ý tới đỏp số 990 = 9.10.11, trong đú 9.10 là số hạng cuối cựng của A và 11 là số tự nhiờn kề sau của 10, tạo thành tớch ba số tự nhiờn liờn tiếp. Ta có kết quả tổng quát sau : A = 1.2 + 2.3 + + (n - 1).n = (n - 1).n.(n + 1)/3 Lời giải khỏc : Lời giải 2 : 3.A = 3.(1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10) = 3.(0.1 + 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10) = [1.(0 + 2) + 3.(2 + 4) + 5.(4 + 6) + 7.(6 + 8) + 9.(8 + 10)].3 = 3.(1.1.2 + 3.3.2 + 5.5.2 + 7.7.2 +9.9.2) = (12 + 32 + 52 + 72 + 92).2.3 = (12 + 32 + 52 + 72 + 92).6 = 990 = 9.10.11 Ta chưa biết cỏch tớnh tổng bỡnh phương cỏc số lẻ liờn tiếp bắt đầu từ 1, nhưng liờn hệ với lời giải 1, ta cú : (12 + 32 + 52 + 72 + 92).6 = 9.10.11, hay (12 + 32 + 52 + 72 + 92) = 9.10.11/6 Ta cú kết quả tổng quỏt : P = 12 + 32 + 52 + 72 + + (2n + 1)2 = (2n + 1)(2n + 2)(2n + 3)/6 Bài tập vận dụng : Tớnh các tổng sau : P = 12 + 32 + 52 + 72 + ... + 992 Q = 112 + 132 + 152 + + 20092. M = 1.2 + 2.3 + 3.4 + 4.5 + .... + 99.100 Bài toỏn 3 : Cho A = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10 C = A + 10.11. Tớnh giỏ trị của C. Giải : Theo cỏch tớnh A của bài toỏn 2, ta được kết quả là : C = 10.11.12/3 Theo cách giải 2 của bài toỏn 2, ta lại có : C = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10 + 10.11 = (1.2 + 2.3) + (3.4 + 4.5) + (5.6 + 6.7) + (7.8 + 8.9) + (9.10 + 10.11) = 2( 1 + 3) + 4( 3 + 5) + 6( 5 + 7) + 8 ( 7 + 9) + 10( 9 + 11) = 2.4 + 4.8 + 6.12 + 8.16 + 10.20 = 2.2.2 + 2.4.4 + 2.6.6 + 2.8.8 + 2.10.10 = 2.22 + 2.42 + 2.62 + 2.82 + 2.102 = 2.( 22 + 42 + 62 + 82 + 102) Vậy C = 2.(22 + 42 + 62 + 82 + 102) = 10.11.12/3 .Từ đó ta có : 22 + 42 + 62 + 82 + 102 = 10.11.12/6 Ta lại cú kết quả tổng quỏt là : 22 + 42 + 62 + + (2n)2 = 2n.(2n + 1).(2n + 2)/6 Bài tập áp dụng : Tớnh tổng : 202 + 222 + + 482 + 502. Cho n thuộc N*. Tớnh tổng : n2 + (n + 2)2 + (n + 4)2 + + (n + 100)2. Hướng dẫn giải : Xột hai trường hợp n chẵn và n lẻ .Bài toỏn cú một kết quả duy nhất, khụng phụ thuộc vào tớnh chẵn lẻ của n. 3.Tính tổng A = 1.2 + 2.3 + 3.4 + 4.5 + + 999.1000 Bài toỏn 4 : Chứng minh rằng : 12 + 22 + 32 + + n2 = n.(n + 1)(2n + 1)/6 Lời giải 1 : Xột trường hợp n chẵn : 12 + 22 + 32 + + n2 = (12 + 32 + 52 + + (n – 1)2) + (22 + 42 + 62 + + n2) = [(n – 1).n.(n + 1) + n.(n + 1).(n + 2)]/6 = n.(n + 1).(n -1 + n + 2)/6 = n.(n + 1).(2n + 1)/6 Tương tự với trường hợp n lẻ, ta cú 12 + 22 + 32 + + n2 = (12 + 32 + 52 + + n 2) + (22 + 42 + 62 + + (n – 1)2) = n(n + 1)(n + 2)/6 + (n – 1)n(n + 1)/6 = n(n + 1)(n + 2 + n – 1)/6 = n(n + 1)( 2n + 1) /6 ( đpcm) Lời giải 2 : S = 1² + 2² + 3² + 4² ++ n² S = 1.1 + 2.2 + 3.3 +4.4 + + n.n = 1.(2-1) + 2(3-1) + 3(4-1) + 4(5-1) + n[(n+1)-1] = 1.2 – 1+ 2.3 – 2 + 3.4 – 3 + 4.5 – 4 ++ n(n + 1 ) – n = 1.2 + 2.3 + 3.4 + 4.5 + + n( n + 1 ) – ( 1 + 2 + 3 +4 + + n ) = - = n( n + 1 ). ) = n( n + 1) Vậy S = Vậy ta có công thức tính tổng của dãy số chính phương bắt đầu từ 1 là : 12 + 22 + 32 + + n2 = n.(n + 1)(2n + 1)/6 Bài tập áp dụng : Tớnh giỏ trị của các biểu thức sau: N = 1 + 22 + 32 + 42 + 52 + + 992 A = 1 + 4 + 9 + 16 + 25 + 36 + ... + 10000 B = - 12 + 22 – 32 + 42 - - 192 + 202. Gợi ý: Tỏch B = (22 + 42 + + 202) – (12 + 32 + + 192) ; tớnh tổng cỏc số trong mỗi ngoặc đơn rồi tỡm kết quả của bài toỏn. Bài toán 5 . Tính : A = 1.3 + 3.5 + 5.7 + + 97.99 Giải Nhận xột : Khoảng cỏch giữa hai thừa số trong mỗi số hạng là 2 , nhõn hai vế của A với 3 lần khoảng cỏch này ta được : 6A = 1.3.6 + 3.5.6 + 5.7.6 + + 97.99.6 = 1.3.(5 + 1) + 3.5.(7 - 1) + 5.7(9 - 3) + + 97.99(101 - 95) = 1.3.5 + 1.3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + + 97.99.101 - 95.97.99 = 1.3.5 + 3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + + 97.99.101 - 95.97.99 = 3 + 97.99.101 = 161 651 Trong bài toán 2 ta nhân A với 3. Trong bài toán 5 ta nhân A với 6 Ta có thể nhận thấy để làm xuất hiện các hạng tử đối nhau ta nhân A với 3 lần khoảng cách k giữa 2 thừa số trong mỗi hạng tử. Bài toỏn 6 : Tớnh A = 1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + 5.6.7 + 6.7.8 + 7.8.9 + 8.9.10. Lời giải : Trở lại bài toỏn 2. mỗi hạng tử của tổng A cú hai thừa số thỡ ta nhõn A với 3 lần khoảng cỏch giữa hai thừa số đú. Học tập cách đó , trong bài này ta nhõn hai vế của A với 4 lần khoảng cỏch đú vỡ ở đõy mỗi hạng tử cú 3 thừa số .Ta giải được bài toỏn như sau : A = 1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + 5.6.7 + 6.7.8 + 7.8.9 + 8.9.10 4A = (1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + 5.6.7 + 6.7.8 + 7.8.9 + 8.9.10).4 4A = [1.2.3.(4 – 0) + 2.3.4.(5 – 1) + + 8.9.10.(11 – 7)] 4A = (1.2.3.4 – 1.2.3.4 + 2.3.4.5 – 2.3.4.5 + + 7.8.9.10 – 7.8.9.10 + 8.9.10.11) 4A = 8.9.10.11 = 1980. Từ đó ta cú kết quả tổng quỏt A = 1.2.3 + 2.3.4 + 3.4.5 + + (n – 1).n.(n + 1).= (n -1).n.(n + 1)(n + 2)/4 Bài tập áp dụng : Tính các tổng sau : A = 1.2.3 + 2.3.4 + 3.4.5 + ...+ 99.100.101 Bài toán 7 : Tính : A = 1.3.5 + 3.5.7 + + 5.7.9 + + 95.97.99 Giải : 8A = 1.3.5.8 + 3.5.7.8 + 5.7.9.8 + + 95.97.99.8 = 1.3.5(7 + 1) + 3.5.7(9 - 1) + 5.7.9(11 - 3) + + 95.97.99(101 - 93) = 1.3.5.7 + 15 + 3.5.7.9 - 1.3.5.7 + 5.7.9.11 - 3.5.7.9 + + 95.97.99.101 - 93.95.97.99 = 15 + 95.97.99.101 = 11 517 600 Trong bài 6 ta nhân A với 4 (bốn lần khoảng cách). Trong bài 7 ta nhân A với 8 (bốn lần khoảng cách) vì mỗi hạng tử của A cũng có 3 thừa số. Bài toán 8 : Tính A = 1.2 + 3.4 + 5.6 + + 99.100 Giải A = 2 + ( 2+ 1).4 + ( 4 + 1)6 + + (98 + 1).100 = 2 + 2.4 + 4 + 4.6 + 6 + + 98.100 + 100 = (2.4 + 4.6 + + 98.100 ) + (2 + 4 + 6 + 8 + + 100) = 98.100.102 : 6 + 102.50:2 = 166600 + 2550 = 169150 Cách khác : A = 1.(3 - 1) + 3(5 - 1) + 5(7 - 1) + + 99(101 - 1) = 1.3 - 1 + 3.5 - 3 + 5.7 - 5 + + 99.101 - 99 = (1.3 + 3.5 + 5.7 + + 99.101) - (1 + 3 + 5 + 7 + + 99) = 171650 – 2500 = 169150 Trong bài toán này ta không nhân A với một số mà tách ngay một thừa số trong mỗi số hạng làm xuất hiện các dãy số mà ta đã biết cách tính hoặc dễ dàng tính được. Bài tập ỏp dụng Tính A = 1.2.3 + 3.4.5 + 5.6.7 + + 99.99.100 Giải : A = 1.3.( 5 – 3) + 3.5.( 7 – 3) + 5.7.( 9 - 3) + + 99.101.( 103 – 3) = ( 1.3.5 + 3.5.7 + 5.7.9 + + 99.101.103 ) – ( 1.3.3 + 3.5.3 + + 99.101.3 ) = ( 15 + 99.101.103.105): 8 – 3( 1.3 + 3.5 + 5.7 + + 99.101) = 13517400 – 3.171650 = 13002450 Tính A = 1.22 + 2.32 + 3.42 + + 99.1002 Giải : A = 1.2.(3 - 1) + 2.3(4 - 1) + 3.4(5 - 1) + + 99.100.(101 - 1) = 1.2.3 - 1.2 + 2.3.4 - 2.3 + 3.4.5 - 3.4 + + 99.100.101 - 99.100 = (1.2.3 + 2.3.4 + + 99.100.101) - (1.2 + 2.3 + 3.4 + + 99.100) = 25497450 – 333300 = 25164150 Bài tập áp dụng : Tính A = 12 + 42 + 72 + . +1002. Tính B = 1.32 + 3.52 + 5.72 + + 97.992. Tính A = 1.99 + 2.98 + 3.97 + + 49.51+ 50.50 Tính B = 1.3 + 5.7 + 9.11 + + 97.101 Tính C = 1.3.5 – 3.5.7 + 5.7.9 – 7.9.11 + - 97.99.101 Tính D = 1.99 + 3.97 + 5.95 + + 49.51 Tính E = 1.33 + 3.53 + 5.73 + + 49.513 Tính F = 1.992 + 2.982 + 3.972 + + 49.512 Bài toán 9 : Tính tổng S = 1³ + 2³ + 3³ + 4³ + 5³ + + n³ Lời giải : Trước hết ta chứng minh một kờt quả sau đõy : với n là số tự nhiờn thỡ ta cú n2 – n = (n – 1)(n + 1) . Thật vậy : n2 – n = n( n2 – 1) = n( n2 – n + n – 1) = n[(n2 – n) + ( n – 1)] = n[n(n – 1) + ( n – 1)] = (n – 1)n( n + 1) đpcm áp dụng kết quả trên để tính S Ta cú S = 1³ + 2³ + 3³ + 4³ + 5³ + + n³ S = 13 – 1 + 23 – 2 + 33 – 3 + 43 – 4 + 53 – 5 ++ n3 – n + ( 1 + 2 + 3 + + n ) S = 0 + 2( 22 – 1 ) + 3( 32 – 1 ) + 4( 42 – 1 ) + + n( n2 – 1 ) + ( 1 + 2 + 3 + 4 + + n ) S = 0 + 1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + + (n – 1 )n( n + 1 ) + ( 1 + 2 + 3 + 4 + + n ) S = = = n( n + 1). = n( n + 1 ). Nhận xột Vì = 1 + 2 + 3 + 4 + + n , nên ta có kết quả rất quan trọng sau đây : 1³ + 2³ + 3³ + 4³ + 5³ + + n³ = ( 1 + 2 + 3 + 4 + 5 + + n )² Bài toán 10 : Tính các tổng sau : a ) A = 9 + 99 + 999 + 9999 + ...+ b ) B = 1 + 11 + 111 + 1111 + ... + c ) C = 4 + 44 + 444 + 4444 + ... + Giải : A = 9 + 99 + 999 + 9999 + ...+ = 101 – 1 + 102 – 1 + 103 – 1 + ... + 1010 – 1 = 101 + 102 + 103 + ... + 1010 – 10 = ( 101+ 102 + 103+ 104 + ... + 1010 ) – 10 = 0 – 10 = 00 B = 1 + 11 + 111 + 1111 + ... + 9B = 9.(1 + 11 + 111 + 1111 + ... + ) = 9 + 99 + 999 + ... + 9B = 00 ( Theo kết quả của câu a) Vậy B = 00 / 9 c) C = 4 + 44 + 444 + 4444 + ... + = 4(1 + 11 + 111 + 1111 + ... + ) 9C = 9.4.( 1 + 11 + 111 + 1111 + ... + ) = 4.( 9 + 99 + 999 + 9999 + ...+ ) = 4.00 = 00 Vậy C = 00 / 9 Bài tập áp dụng : Tính các tổng sau : A = 2 + 22 + 222 + 2222 + ... + B = 3 + 33 + 333 + 3333 + ... + C = 5 + 55 + 555 + 5555 + ... +
Tài liệu đính kèm: