Bài tập tết Canh Dần Toán Lớp 8 - Trần Phi Nga

Bài tập tết Canh Dần Toán Lớp 8 - Trần Phi Nga

1) Tìm giá trị của k sao cho:

a. Phương trình: 2x + k = x – 1 có nghiệm x = – 2.

b. Phương trình: (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2

c. Phương trình: 2(2x + 1) + 18 = 3(x + 2)(2x + k) có nghiệm x = 1

d. Phương trình: 5(m + 3x)(x + 1) – 4(1 + 2x) = 80 có nghiệm x = 2

2) Tìm các giá trị của m, a và b để các cặp phương trình sau đây tương đương:

a. mx2 – (m + 1)x + 1 = 0 và (x – 1)(2x – 1) = 0

b. (x – 3)(ax + 2) = 0 và (2x + b)(x + 1) = 0

3) Giải các phương trình sau:

1. a) 3x – 2 = 2x – 3 b) 3 – 4y + 24 + 6y = y + 27 + 3y

 c) 7 – 2x = 22 – 3x d) 8x – 3 = 5x + 12

 e) x – 12 + 4x = 25 + 2x – 1 f) x + 2x + 3x – 19 = 3x + 5

 g) 11 + 8x – 3 = 5x – 3 + x h) 4 – 2x + 15 = 9x + 4 – 2x

 

doc 8 trang Người đăng tuvy2007 Lượt xem 814Lượt tải 0 Download
Bạn đang xem tài liệu "Bài tập tết Canh Dần Toán Lớp 8 - Trần Phi Nga", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
PHẦN ĐẠI SỐ
Tìm giá trị của k sao cho:
Phương trình: 2x + k = x – 1 	có nghiệm x = – 2. 
Phương trình: (2x + 1)(9x + 2k) – 5(x + 2) = 40 	có nghiệm x = 2 
Phương trình: 2(2x + 1) + 18 = 3(x + 2)(2x + k) 	có nghiệm x = 1
Phương trình: 5(m + 3x)(x + 1) – 4(1 + 2x) = 80	có nghiệm x = 2
Tìm các giá trị của m, a và b để các cặp phương trình sau đây tương đương:
mx2 – (m + 1)x + 1 = 0	và	(x – 1)(2x – 1) = 0
(x – 3)(ax + 2) = 0	và	(2x + b)(x + 1) = 0
Giải các phương trình sau:
1. 	a)	3x – 2 = 2x – 3	b)	3 – 4y + 24 + 6y = y + 27 + 3y
	c)	7 – 2x = 22 – 3x	d)	8x – 3 = 5x + 12
	e)	x – 12 + 4x = 25 + 2x – 1	f)	x + 2x + 3x – 19 = 3x + 5
	g)	11 + 8x – 3 = 5x – 3 + x	h)	4 – 2x + 15 = 9x + 4 – 2x
2.	a)	5 – (x – 6) = 4(3 – 2x) b)2x(x + 2)2 – 8x2 = 2(x – 2)(x2 + 2x + 4) 
	c)	7 – (2x + 4) = – (x + 4)	d)	(x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3
	e)	(x + 1)(2x – 3) = (2x – 1)(x + 5)	
 f)	(x – 1)3 – x(x + 1)2 = 5x(2 – x) – 11(x + 2)
	g)	(x – 1) – (2x – 1) = 9 – x h)	(x – 3)(x + 4) – 2(3x – 2) = (x – 4)2	
i) x(x + 3)2 – 3x = (x + 2)3 + 1 j)(x + 1)(x2 – x + 1) – 2x = x(x + 1)(x – 1) 
3.	a)	1,2 – (x – 0,8) = –2(0,9 + x)	b)	3,6 – 0,5(2x + 1) = x – 0,25(2 – 4x) 
	c)	2,3x – 2(0,7 + 2x) = 3,6 – 1,7x 	d) 	0,1 – 2(0,5t – 0,1) = 2(t – 2,5) – 0,7
	e)	3 + 2,25x +2,6 = 2x + 5 + 0,4x	
 f)	5x + 3,48 – 2,35x = 5,38 – 2,9x + 10,42
4. 	a)	b) 	
	c)	d) 	
	e)	f) 	
	g)	h) 	
	i) 	k) 	
	m) 	n) 	
	p) 	q) 	
	r) 	s) 
	t) 	u) 	
	v)	w)	
5.	a)	b)	
	c)	d)	
	e)	f)	
	g)	h)	
Tìm giá trị của x sao cho các biểu thức A và B cho sau đây có giá trị bằng nhau:
A = (x – 3)(x + 4) – 2(3x – 2)	và	B = (x – 4)2
A = (x + 2)(x – 2) + 3x2	và 	B = (2x + 1)2 + 2x
A = (x – 1)(x2 + x + 1) – 2x	và 	B = x(x – 1)(x + 1)
A = (x + 1)3 – (x – 2)3	và	B = (3x –1)(3x +1).
Giải các phương trình sau:
a) b) 
c) 
Giải các phương trình sau:
a) 	b) 
Giải các phương trình sau:
a) 	
b) 
c) 	d) 
e) 	f) 
g) 	h) 
i) 
Tìm điều kiện xác định của các phương trình sau:
	a)	3x2 – 2x = 0	b)	
	c)	d)	
	e)	f)	
Giải các phương trình sau:
1.	a) 	b)	 c)
	d)	e)	f)	
	g)	h)	
2.	a) 	b) 	
	c) 	d) 	
	e) 	f)	
	i)	j)	
3.	a)	b)	
	c)	d)	
	e)	f) 	
	g)	h) 	
	i)	j) 	
	k)	l) 	
	m)	n)	
	o)	p)	
4.	a)	b)	
	c)	d)	
	e)	f)	
	g)	h)	
i) j)	
Giải các phương trình sau:
	a)	b)	
	c)	d)	
	e)	f)	
	g)	h)	
	i)	j)	
	k)	l)	
Giải các phương trình sau:
a) 	b) 
c) d) 
Tìm các giá trị của a sao cho mỗi biểu thức sau có giá trị bằng 2.
	a)	b)	
	c)	d)	
Tìm x sao cho giá trị của hai biểu thức và bằng nhau.
Tìm y sao cho giá trị của hai biểu thức và bằng nhau.
Cho phương trình (ẩn x): 
Giải phương trình với a = – 3.
Giải phương trình với a = 1.
Giải phương trình với a = 0.
Tìm các giá trị của a sao cho phương trình nhận x = làm nghiệm.
Giải các phương trình sau:
1.	a)	(3x – 2)(4x + 5) = 0	b)	(2,3x – 6,9)(0,1x + 2) = 0
c)	(4x + 2)(x2 + 1) = 0 	d)	(2x + 7)(x – 5)(5x + 1) = 0
e)	(x – 1)(2x + 7)(x2 + 2) = 0	f)	(4x – 10)(24 + 5x) = 0
g)	(3,5 – 7x)(0,1x + 2,3) = 0	h)	(5x + 2)(x – 7) = 0
i)	15(x + 9)(x – 3) (x + 21) = 0	j)	(x2 + 1)(x2 – 4x + 4) = 0
k)	(3x – 2) = 0	l)	(3,3 – 11x)= 0
2.a)(3x + 2)(x2 – 1) = (9x2 – 4)(x + 1) b)x(x + 3)(x – 3) – (x + 2)(x2 – 2x + 4) = 0
c)	2x(x – 3) + 5(x – 3) = 0	d)	(3x – 1)(x2 + 2) = (3x – 1)(7x – 10)
e)	(x + 2)(3 – 4x) = x2 + 4x + 4	f)	x(2x – 7) – 4x + 14 = 0 
g)	3x – 15 = 2x(x – 5)	h)	(2x + 1)(3x – 2) = (5x – 8)(2x + 1)
i)	0,5x(x – 3) = (x – 3)(1,5x – 1)	j)	(2x2 + 1)(4x – 3) = (x – 12)(2x2 + 1)	
k)	x(2x – 9) = 3x(x – 5)	l)	(x – 1)(5x + 3) = (3x – 8)(x – 1)
m)	2x(x – 1) = x2 - 1	n) 	(2 – 3x)(x + 11) = (3x – 2)(2 – 5x)	
o)	p)	
q)	r)	
s)	(x + 2)(x – 3)(17x2 – 17x + 8) = (x + 2)(x – 3)(x2 – 17x +33)
3.	a)	(2x – 5)2 – (x + 2)2 = 0	b)	(3x2 + 10x – 8)2 = (5x2 – 2x + 10)2 
c)	(x2 – 2x + 1) – 4 = 0 	d)	4x2 + 4x + 1 = x2
e)	(x + 1)2 = 4(x2 – 2x + 1)2	f)	(x2 – 9)2 – 9(x – 3)2 = 0
g)	9(x – 3)2 = 4(x + 2)2	h)	(4x2 – 3x – 18)2 = (4x2 + 3x)2
i)	(2x – 1)2 = 49	j)	(5x – 3)2 – (4x – 7)2 = 0
k)	(2x + 7)2 = 9(x + 2)2	l)	4(2x + 7)2 = 9(x + 3)2
m)	(x2 – 16)2 – (x – 4)2 = 0	n)	(5x2 – 2x + 10)2 = (3x2 + 10x – 8)2
o)	p)	
q)	r)	
4.	a)	3x2 + 2x – 1 = 0	b)	x2 – 5x + 6 = 0
c)	x2 – 3x + 2 = 0	d)	2x2 – 6x + 1 = 0
e)	4x2 – 12x + 5 = 0	f)	2x2 + 5x + 3 = 0
g)	x2 + x – 2 = 0	h)	x2 – 4x + 3 = 0
i)	2x2 + 5x – 3 = 0	j)	x2 + 6x – 16 = 0
5.	a)	3x2 + 12x – 66 = 0	b)	9x2 – 30x + 225 = 0
c)	x2 + 3x – 10 = 0	d)	3x2 – 7x + 1 = 0
e)	3x2 – 7x + 8 = 0	f)	4x2 – 12x + 9 = 0
g)	3x2 + 7x + 2 = 0	h)	x2 – 4x + 1 = 0
i)	2x2 – 6x + 1 = 0	j)	3x2 + 4x – 4 = 0
6.	a)	(x – ) + 3(x2 – 2) = 0	b)	x2 – 5 = (2x – )(x + ) 
7.	a)	2x3 + 5x2 – 3x = 0	b)	2x3 + 6x2 = x2 + 3x
c)	x2 + (x + 2)(11x – 7) = 4	d)	(x – 1)(x2 + 5x – 2) – (x3 – 1) = 0
e)	x3 + 1 = x(x + 1)	f)	x3 + x2 + x + 1 = 0 
g)	x3 – 3x2 + 3x – 1 = 0	h)	x3 – 7x + 6 = 0
i)	x6 – x2 = 0	j)	x3 – 12 = 13x
k)	– x5 + 4x4 = – 12x3	l)	x3 = 4x
Cho phương trình (ẩn x): 4x2 – 25 + k2 + 4kx = 0
	a) Giải phương trình với k = 0	b) Giải phương trình với k = – 3 
	c) Tìm các giá trị của k để phương trình nhận x = – 2 làm nghiệm. 
Cho phương trình (ẩn x): x3 + ax2 – 4x – 4 = 0
Xác định m để phương trình có một nghiệm x = 1.
Với giá trị m vừa tìm được, tìm các nghiệm còn lại của phương trình. 
Cho phương trình (ẩn x): x3 – (m2 – m + 7)x – 3(m2 – m – 2) = 0
Xác định a để phương trình có một nghiệm x = – 2.
Với giá trị a vừa tìm được, tìm các nghiệm còn lại của phương trình. 
PHẦN HÌNH HỌC
1/Cho tứ giác ABCD,biết ,, .Tính góc C,góc D?
2/Cho h ình thoi có độ dài hai đường chéo bằng 6cm và 8cm .Tính độ dài cạnh hình thoi? 
3/Cho hình thang ABCD có AB // CD, AB = 4, CD = 12.Tính độ dài đường TB của hình thang 
4/Tam giác ABC vuông tại A, BC = 7cm, MB = MC, MBC.Tính độ dài AM?
5/Cho tam giác ABC có M,N theo thứ tự là trung điểm của AB và AC.Biết MN = 4,5 cm.Tính độ dài cạnh BC.
6/Cho hình thang ABCD (AB//CD),gọi E,F theo thứ tự là trung điểm của AD và BC.Biết EF = 6cm, AB = 4cm ,tính độ dài cạnh CD?
7/Hình thang có độ dài đáy lớn gấp đôi đáy nhỏ . Độ dài đường trung bình là 12 cm. Tính độ dài 2 đáy.
8/Cho hình chữ nhật ABCD, hai đường chéo AC và BD cắt nhau tại O, biết AO = 3cm, Tính độ dài BD?
9/Cho ABC và một điểm O tuỳ ý . Vẽ A/B/C/ đối xứng với ABC qua điểm O .
10/Cho hình vuông ABCD có độ dài đường chéo bằng 10cm.Tính cạnh hình vuông?
11/Cho hình vuông ABCD có độ dài cạnh bằng 3.Tính độ dài đường chéo của hình vuông?
12/T ính độ dài đường trung tuyến ứng với cạnh huyền của một tam giác vuông có các 
cạnh góc vuông bằng 3 cm v à 4 cm.
13/Tính số cạnh của đa giác biết rằng tổng số đo của các góc trong và góc ngoài của đa giác là 12600
14/Tính số cạnh của một đa giác biết rằng tất cả các góc của đa giác bằng nhau và tổng của tất cả các góc ngoài với một trong các góc của đa giác có số đo bằng 480o.
15/Cho hình chữ nhật ABCD có AB = 5cm, BC = 4cm. Trên cạnh AD dựng tam giác ADE sao cho AE và DE cắt cạnh BC lần lượt tại M và N và A là trung điểm của đoạn thẳng ME. Tính diện tích tam giác ADE.
16/Tính diện tích hình thang vuông có đáy nhỏ = chiều cao bằng 8cm và góc nhỏ nhất bằng 450
17/Tính các cạnh của hình chữ nhật biết bình phương một cạnh là 25dm và diện tích hình chữ nhật là 30dm2
18/*Cho tam giác ABC. Các đường trung tuyến BE và CF cắt nhau tại G. Tính tỉ số diện tích 2 tam giác GEC và ABC.
19/Tính diện tích hình thang vuông ABCD (AB//CD) biết AB=2cm ;CD=4Cm;C = 450
20/Cho hình thoi ABCD, biết AB=10cm , AI=8cm (I là giao điểm của 2 đường chéo ) .Hãy tính diện tích hình thoi đó. 
21/*Hai đường chéo của hình thang cân vuông góc với nhau còn tổng hai cạnh đáy bằng 2a. Tính diện tích của hình thang.(a2)
22/*Diện tích của một hình thoi là 216dm2. Một đường chéo của nó bằng 18dm. Tính khoảng cách giao điểm của các đường chéo đến cạnh của hình thoi.
23/*Tính diện tích hình thang cân có đường cao a và các đường chéo vuông góc với nhau
24/Đường chéo của hình thoi bằng 18 cm; 24cm. Tính chu vi hình thoi và khoảng cách giữa các cạnh song song.
25/Cho tam giác ABC vuông ở A , BC = 10 cm . Gọi M là trung điểm của BC , D là điểm đối xứng với A qua M 
Tính AM
Tứ giác ABDC là hình gì? Vì sao?
Tam giác ABC có điều kiện gì thì tứ giác ABDC là hình vuông 
26/Cho tam giác ABC . Qua A vẽ đường thẳng song song với BC, qua B vẽ đường thẳng song song với AC chúng cắt nhau tại D.
Tứ giác ADBC là hình gì ? Vì sao ? 
Gọi E là trung điểm của cạnh AC, N là điểm đối xứng với điểm B qua E. Chứng minh M và N đối xứng nhau qua A. 
27/Cho hình thang cân ABCD (AB // CD). Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.
	Đoạn thẳng MN, NP lần lượt là các đường trung bình của tam giác nào ? vì sao ?
Chứng minh MP ^ NQ. 
28/Cho ABC cân tại A ,đường trung tuyến AM .Gọi I là trung điểm của AC ,K là điểm đối xứng với M qua điểm I .
Chứng minh tứ giác AMCK là hình chữ nhật .
Chứng minh tứ giác AKMB là hình bình hành .
Tìm điều kiện của ABC để tứ giác AMCK là hình vuông .
29/Cho ABC , các đường trung tuyến BM và CN cắt nhau tại G . Gọi P và Q lần lượt là trung điểm của BG và CG .
a) Chứng minh tứ giác MNPQ là hình bình hành .
b) Tam giác ABC có điều kiện gì thì tứ giác MNPQ là hình chữ nhật .
c) Nếu các đường trung tuyến BM và C N vuông góc với nhau thì tứ giác MNPQ là hình gì ? Vì sao? 
30/Cho ABC , điểm D nằm giữa B và C .Qua D vẽ đường thẳng song song với AB cắt AC ở E . Qua D vẽ đường thẳng song song với AC cắt AB ở F .
Tứ giác AEDF là hình gì ? 
Điểm D ở vị trí nào trên cạnh BC thì tứ giác AEDF là hình thoi .
c)Tam giác ABC có điều kiện gì thì tứ giác AEDF là hình chữ nhật .
31/ Cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA.
a) Tứ giác MNPQ là hình gì? Vì sao?
b) Tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình vuông?
c) Với điều kiện câu b) hãy tính tỉ số diện tích của tứ giác ABCD và MNPQ
32/ Cho tam giác ABC cân tại A. Gọi E,F và D lần lượt là trung điểm của AB, BC, AC. 
C/ M: a/Tứ giác BCDE là hình thang cân.	b/Tứ giác BEDF là hình bình hành
c/Tứ giác ADFE là hình thoi	d/
33/Cho ABC cân tại A . Gọi M là điểm bất kỳ thuộc cạnh đáy BC . Từ M kẻ ME // AB ( E AC ) và MD // AC ( D AB )
a)Chứng minh ADME là Hình bình hành b)Chứng minh MEC cân và MD + ME = AC
c)DE cắt AM tại N. Từ M vẻ MF // DE ( F AC ) ; NF cắt ME tại G . Chứng minh G là trọng tâm của AMF
d)Xác định vị trí của M trên cạnh BC để ADME là hình thoi
34/ Cho hình bình hành ABCD, Evà F lần lượt là trung điểm của AB, CD. Gọi M, N lần lượt là giao điểm của AF, CE với BD.
a)Chứng minh : Tứ giác AECF là hình bình hành.	b)Chứng minh : DM=MN=NB.
c)C/M : MENF là hình bình hành.	 d)AN cắt BC ở I, CM cắt AD ở J. C/M IJ, MN, EF đồng quy.
35/Cho hình chữ nhật ABCD, hai đường chéo AC và BD cắt nhau tại O. Lấy E là điểm bất kì thuộc đoạn thẳng OA. Đường thẳng BE cắt AD tại M. Qua D vẽ một đường thẳng song song với BM, đường thẳng này cắt BC tại F và cắt AC tại N.
a. Chứng minh tứ giác BMDF là hình bình hành.	 
b. Chứng minh OBE = ODN.	 
c. Qua E vẽ một đường thẳng song song với BD, đường thẳng này cắt AD tại H, cắt CD kéo dài tại I. Gọi O’ là trung điểm của đoạn thẳng IH. Cm: O’O // DF	
d. Gọi K là điểm đối xứng với D qua O’. Cm: K, M, B thẳng hàng.

Tài liệu đính kèm:

  • docbai tap tet.doc