Bài 1 : Cho tam giác ABC vuông tại A, AB = 36cm ; AC = 48cm và đường cao AH
a). Tính BC; AH
b). HAB HCA
c). Kẻ phân giác góc B cắt AC tại F . Tính BF
Hướng dẫn :
a).- Aùp duïng ÑL Pitago : BC = 60cm
- Chöùng minh ABC HBA
=> HA = 28,8cm
b). Chứng minh
=> vuoâng ABC vuoâng HBA (1 goùc nhoïn)
c). Aùp duïng t/c tia p/giaùc tính AF
=> AF = 1/2 AB = 18cm
maø =
Bài 2 : Cho tam giác ABC; có AB = 15cm;
AC = 20cm; BC = 25cm.
a). Chứng minh : ABC vuông tại A
b). Trên AC lấy E tuỳ ý , từ E kẻ EH BC tại H và K là giao điểm BA với HE.
CMR : EA.EC = EH.EK
c). Với CE = 15cm . Tính
Bài 3 : Cho hình chữ nhật ABCD có AB = 12cm, BC = 9cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD.
a). Chứng minh HAD đồng dạng với CDB.
b).Tính độ dài AH.
c). Gọi M; N; P lần lượt là trung điểm của BC; AH; DH . Tứ giác BMPN là hình gì ? vì sao ?
Hướng dẫn :
a). (cùng bằng với )
=> vuoâng HAD vuoâng CDB (1 goùc nhoïn)
b). – Tính BD = 15cm
Do vuoâng HAD vuoâng CDB
=> AH = 7,2cm
c). NP // AD và NP = ½ AD
BM // AD và NP = ½ BM
=> NP // BM ; NP = BM
=> BMPN là hình bình hành
Bài 4 : Cho hình thang ABCD (AB // CD), biết AB = 2,5cm; AD = 3,5cm; BD = 5cm và
a). CMR : ABD BDC
b). Tính cạnh BC; DC
c). Gọi E là giao điểm của AC và BD. Qua E kẻ đường thẳng bất kỳ cắt AB; CD lần lượt tại M; N. Tính
a). ABD BDC (g – g)
b). ABD BDC
=> => BC = 7cm; DC = 10cm
c). Áp dụng ĐL Talet :
OÂN TAÄP HOÏC KYØ 2 PHẦN I : HÌNH HỌC PHẲNG A/. KIẾN THỨC CƠ BẢN 1).ĐL Ta-let: (Thuận & đảo) ; B’C’// BC 2). Hệ quả của ĐL Ta – lét : 3). Tính chất tia phân giác của tam giác : AD là p.giác  => 4). Tam giác đồng dạng: A’B’C’ ABC * ĐN : * Tính chất : - ABC ABC - A’B’C’ ABC => ABC A’B’C’ - A’B’C’ A”B”C”; A”B”C” ABC thì A’B’C’ ABC ABC ; AMN MN // BC => AMN ABC * Định lí : 5). Các trường hợp đồng dạng : a). Trường hợp c – c – c : A’B’C’ ABC b). Trường hợp c – g – c : A’B’C’ ABC c) Trường hợp g – g : A’B’C’ ABC 6). Các trường hợp đ.dạng của tam giác vuông : a). Một góc nhọn bằng nhau : => vuông A’B’C’vuông ABC b). Hai cạnh góc vuông tỉ lệ : => vuông A’B’C’vuông ABC c). Cạnh huyền - cạnh góc vuông tỉ lệ : => vuông A’B’C’vuông ABC 7). Tỉ số đường cao và tỉ số diện tích : - A’B’C’ ABC theo tỉ số k => - A’B’C’ ABC theo tỉ số k => B/. BÀI TẬP ÔN : Bài 1 : Cho tam giác ABC vuông tại A, AB = 36cm ; AC = 48cm và đường cao AH a). Tính BC; AH b). HAB HCA c). Kẻ phân giác góc B cắt AC tại F . Tính BF Hướng dẫn : a).- Aùp duïng ÑL Pitago : BC = 60cm - Chöùng minh ABC HBA => HA = 28,8cm b). Chứng minh => vuoâng ABC vuoâng HBA (1 goùc nhoïn) c). Aùp duïng t/c tia p/giaùc tính AF => AF = 1/2 AB = 18cm maø = Bài 2 : Cho tam giác ABC; có AB = 15cm; AC = 20cm; BC = 25cm. a). Chứng minh : ABC vuông tại A b). Trên AC lấy E tuỳ ý , từ E kẻ EH BC tại H và K là giao điểm BA với HE. CMR : EA.EC = EH.EK c). Với CE = 15cm . Tính Bài 3 : Cho hình chữ nhật ABCD có AB = 12cm, BC = 9cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD. a). Chứng minh HAD đồng dạng với CDB. b).Tính độ dài AH. c). Gọi M; N; P lần lượt là trung điểm của BC; AH; DH . Tứ giác BMPN là hình gì ? vì sao ? Hướng dẫn : a). (cùng bằng với) => vuoâng HAD vuoâng CDB (1 goùc nhoïn) b). – Tính BD = 15cm Do vuoâng HAD vuoâng CDB => AH = 7,2cm c). NP // AD và NP = ½ AD BM // AD và NP = ½ BM => NP // BM ; NP = BM => BMPN là hình bình hành Bài 4 : Cho hình thang ABCD (AB // CD), biết AB = 2,5cm; AD = 3,5cm; BD = 5cm và a). CMR : ABD BDC b). Tính cạnh BC; DC c). Gọi E là giao điểm của AC và BD. Qua E kẻ đường thẳng bất kỳ cắt AB; CD lần lượt tại M; N. Tính a). ABD BDC (g – g) b). ABD BDC => => BC = 7cm; DC = 10cm c). Áp dụng ĐL Talet : PHẦN II : ĐẠI SỐ A/. KIẾN THỨC CƠ BẢN : I/. Phương trình bậc nhất một ẩn : 1). Phương trình một ẩn : - Dạng tổng quát : P(x) = Q(x) (với x là ẩn) (I) - Nghiệm : x = a là nghiệm của (I) ó P(a) = Q(a) - Số nghiệm số : Có 1; 2; 3 vô số nghiệm số và cũng có thể vô nghiệm. 2). Phương trình bậc nhất một ẩn : - Dạng tổng quát : ax + b = 0 () - Nghiệm số : Có 1 nghiệm duy nhất x = 3). Hai quy tắc biến đổi phương trình : * Chuyển vế : Ta có thể chuyển 1 hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó. * Nhân hoặc chia cho một số : Ta có thể nhân (chia) cả 2 vế của PT cho cùng một số khác 0. 4). Điều kiện xác định (ĐKXĐ) của phương trình - ĐKXĐ của PT Q(x) : mẫu thức - Nếu Q(x) là 1 đa thức thì ĐKXĐ là : II/. Bát phương trình bậc nhất một ẩn : 1). Liên hệ thứ tự : Với a; b; c là 3 số bất kỳ ta có * Với phép cộng : - Nếu a b thì a + c b + c - Nếu a < b thì a + c < b + c * Với phép nhân : - Nhân với số dương : + Nếu a b và c > 0 thì a . c b . c + Nếu a 0 thì a . c < b . c - Nhân với số âm : + Nếu a b và c < 0 thì a . c b . c + Nếu a b . c 2). Bất phương trình bật nhất một ẩn : - Dạng TQ : ax + b < 0 ( hoặc ) với 3). Hai quy tắc biến đổi bất phương trình : * Chuyển vế : Ta có thể chuyển 1 hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó. * Nhân hoặc chia cho một số : Khi nhân (chia) cả 2 vế của BPT cho cùng một số khác 0, ta phải : - Giữ nguyên chịều BPT nếu số đó dương. - Đổi chiều BPT nếu số đó âm. B/. BÀI TẬP : Chuû ñeà 1 : Giaûi phöông trình Daïng 1 : PT ñöa ñöôïc veà daïng ax + b = 0 () * PP: - Chuyeån caùc haïng töû chöùa aån veà 1 veá vaø haïng töû coù chöùa heä soá töï do veà veá coøn laïi. * Aùp duïng : Giaûi caùc phöông trình sau : 1). 3x – 5 = x + 7 ó 3x – x = 7 + 5 ó 2x = 12 ó x = 12 : 2 = 6 Vaäy x = 6 laø nghieäm cuûa phöông trình . 2). 3.(x + 1)(x – 1) – 5x = 3x2 + 2 ( NX : PT coù theå ñöa ñöôïc veà baäc I vì VT coù 3x2 vaø VP cuõng coù 3x2 ) ó 3.(x2 – 1) – 5x = 3x2 + 2 ó 3x2 – 3 – 5x = 3x2 + 2 ó 3x2 – 5x – 3x2 = 2 + 3 ó -5x = 5 ó x = -1 Vaäy x = -1 laø nghieäm cuûa phöông trình . * Baøi taäp töï giaûi : 1). 2(x – 3) + 1 = x – 8 (ÑS : x = - 3) 2). (x – 1)2 – (x + 1)(x – 1) = 3x – 5 (ÑS : x = 7/5) 3). (ÑS : x = 1/2) Daïng 2 : Giaûi phöông trình tích PP : - Ñöa PT veà daïng coù VP = 0 - Phaân tích VT thaønh nhaân töû ñeå PT coù daïng : A(x).B(x) = 0 A(x).=0 hoặc B(x).= 0 *Aùp duïng : Giaûi caùc phöông trình sau 1). 4x2 – 9 = 0 (NX: VT coù chöùa 4x2 khoâng theå trieät tieâu ñeå ñöa veà PT baäc nhaát => giaûi PT tích) ó (2x)2 – 32 = 0 ó (2x + 3)(2x – 3) = 0 ó Vậy là nghiệm của PT 2). (x – 6)(x + 1) = 2.(x + 1) ( NX : khi nhaân ñeå khai trieån thì VT coù x2; VP khoâng coù neân PT khoâng theå ñöa veà baäc I ) ó (x – 6)(x + 1) – 2(x + 1) = 0 ó (x + 1).[(x – 6) – 2] = 0 ó (x + 1)(x – 8) = 0 ó x + 1 = 0 hoaëc x – 8 = 0 ó x = - 1 hoaëc x = 8 Vaäy x = -1 vaø x = 8 laø nghieäm cuûa phöông trình. Baøi taäp töï giaûi : 1). x3 – 6x2 + 9x = 0 (ÑS : x = 0; x = 3) 2). (2x2 + 1)(2x + 5) = (2x2 + 1)(x – 1) (ÑS : x = 6 vì 2x2 + 1 > 0 vôùi moïi x) Daïng 3 : Phöông trình chöùa aån ôû maãu * PP : - Tìm ÑKXÑ cuûa PT - Qui ñoàng vaø khöû maãu - Giaûi PT vöøa tìm ñöôïc - So saùnh vôùi ÑKXÑ ñeå choïn nghieäm vaø traû lôøi. * Aùp duïng : Giaûi caùc phöông trình sau 1). (I) - TXÑ : x 1 ; x 3 ó ó (x – 5)(x – 3) + 2(x – 1) = (x – 1)(x – 3) ó x2 – 8x + 15 + 2x – 2 = x2 – 4x + 3 ó x2 – 6x – x2 + 4x = 3 – 13 ó - 2x = -10 ó x = 5 , thoaû ÑKXÑ Vaäy x = 5 laø nghieäm cuûa phöông trình. * Baøi taäp töï giaûi : 1). (ÑS : x = -6) 2). ( ÑS : x = - 3 TXÑ. Vaäy PT voâ nghieäm) 3). (ĐS : ) Chuû ñeà 2 : Giaûi baát phöông trình * PP : Söû duïng caùc pheùp bieán ñoåi cuûa BPT ñeå ñöa caùc haïng töû chöùa aån veà 1 veá , heä soá veà veá coøn laïi . * Aùp duïng : Giaûi caùc baát phöông trình sau : 1). 3 – 2x > 4 ó -2x > 4 – 3 (Chuyeån veá 3 thaønh -3) ó -2x > 1 ó x < (Chia 2 veá cho -2 < 0 vaø ñoåi chieàu BPT) ó x < Vaäy x < laø nghieäm cuûa baát phöông trình. 2). ó (quy đồng) ó 20x – 25 21 – 3x (Khử mẫu) ó 20x + 3x 21 + 25 ( chuyeån veá vaø ñoåi daáu) ó 23x 46 ó x 2 (chia 2 veá cho 23>0, giöõ nguyeân chieàu BPT) Vaäy x 2 laø nghieäm cuûa BPT . * Baøi taäp töï giaûi : 1). 4 + 2x < 5 (ÑS : x < 1/2) 2). (x – 3)2 2) 3). ( ÑS : x ) Chuû ñeà 3 : Giaûi phöông trình chöùa daáu giaù trò tuyeät ñoái * VD : Giaûi caùc phöông trình sau : 1). (1) * Neáu khi ñoù (1) ó 3x = x + 8 ó x = 4 > 0 (nhaän) * Neáu khi ñoù (1) ó -3x = x + 8 ó x = -2 < 0 (nhaän) Vaäy x = 4 vaø x = -2 laø nghieäm cuûa PT. * Baøi taäp töï giaûi : 1). (ÑS : x = 3 nhaän; x = 9/7 loaïi) 2). (ĐS : x = 0) Chuû ñeà 4 : Giaûi toaùn baèng caùch laäp PT : * PP : - B1 : Laäp phöông trình + Choïn aån, ñôn vò & ÑK cho aån. + Bieåu thò soá lieäu chöa bieát theo aån. + Laäp PT bieåu thò moái quan heä caùc ñòa lg. - B2 : Giaûi phöông trình. - B3 : Choïn nghieäm thoaû ÑK cuûa aån vaø traû lôøi. * Aùp duïng : 1). Hieän nay meï hôn con 30 tuoåi , bieát raèng 8 naêm nöõa thì tuoåi meï seõ gaáp ba laàn tuoåi con . Hoûi hieän nay moãi ngöôøi bao nhieâu tuoåi ? Giaûi : Goïi x (tuoåi) laø tuoåi cuûa con hieän nay. (ÑK : x nguyeân döông) x + 30 (tuoåi) laø tuoåi cuûa meï hieän nay. Vaø x + 8 (tuoåi) laø tuoåi con 8 naêm sau . x + 38 (tuoåi) laøtuoåi cuûa meï 8 naêm sau . Theo ñeà baøi ta coù phöông trình : 3(x + 8) = x + 38 ó 3x + 24 = x + 38 ó 2x = 14 ó x = 7 ,thoaû ÑK Vaäy tuoåi con hieän nay laø 7 tuoåi vaø tuoåi meï laø 37 tuoåi . 2). Lúc 6h sáng, một xe máy khởi hành từ A để đến B. Sau đó 1h, một ôtô cũng xuất phát từ A đến B với vận tốc trung bình lớn hơn vận tốc trung bình của xe máy là 20km/h. Cả hai xe đến B đồng thời vào lúc 9h30’ sáng cùng ngày. Tính độ dài quãng đường AB. Quãng đường(km) = Vận tốc(Km/h) * Thời gian(h) v (km/h) t(h) S(km) Xe máy x .x Ôtô x + 20 (x + 20) Giải : Gọi x (km/h) là vận tốc xe máy (x > 20) x + 20 (km/h) là vận tốc của ôtô .x là quãng đường xe máy đi được (x + 20) là quãng đường ôtô đi được Ta có hệ phương trình : .x = (x + 20) => x = 50 (thoả ĐK) Vậy quãng đường AB là : 50. 3,5 = 175km * Baøi taäp töï giaûi : 1). Tuoåi oâng hieän nay gaáp 7 laàn tuoåi chaùu , bieát raèng sau 10 naêm nöûa thì tuoåi oâng chæ coøn gaáp 4 laàn tuoåi chaùu . Tính tuoåi moãi ngöôøi hieän nay. ( ÑS : Chaùu 10 tuoåi ; oâng 70 tuoåi) 2). Tìm soá töï nhieân bieát raèng neáu vieát theâm moät chöõ soá 4 vaøo cuoái cuûa soá ñoù thì soá aáy taêng theâm 1219 ñôn vò . (ÑS : soá 135) 3). Một người đi xe đạp từ A đến B với vận tốc trung bình15km/h. Lúc về người đó đi với vận tốc 12km/h nên thời gian về nhiều hơn thời gian đi là 45 phút. Tính độ dài quãng đường AB. 4). Một canô xuôi dòng từ bến A đến bến B mất 5 giờ và ngược dòng từ bến B về bến A mất 6 giờ. Tính khoảng cách giữa hai bến A và B, biết rằng vận tốc của dòng nước là 2km/h. PHẦN III : ĐỀ THAM KHẢO : ĐỀ SỐ 1 : Bài 1 : Giải phương trình và bất phương trình sau : 1). 2). 3). Bài 2 : Ông của An hơn An 56 tuổi. Cách đây 5 năm, tuổi của ông gấp 8 lần tuổi An. Hỏi tuổi của An hiện nay bao nhiêu tuổi. Bài 3 : Cho tam giác ABC vuông tại A, AB = 36cm ; AC = 48cm và đường cao AH a). HAB ABC và AB2 = BH.BC b). Tính BC; AH c). Kẻ phân giác góc B cắt AH tại E và AC tại F . CMR : AEF cân ĐỀ SỐ 2 : Bài 1 : Giải các phương trình sau : 1). (x + 1)(x – 5) – x(x – 6) = 3x + 7 2). Bài 2 : Cho biểu thức A = . Hãy tìm giá trị của x để biểu thức A dương. Bài 3 : Cho ABC vuoâng taïi A, ñöôøng cao AH. a). CMR : HAB HCA b). Cho AB = 15cm, AC = 20cm. Tính BC, AH c). Goïi M laø trung ñieåm cuûa BH, N laø trung ñieåm cuûa AH. CMR : CN vuoâng goùc AM ĐỀ SỐ 3 : Bài 1 : Giải các phương trình sau : a). 6x – 3 = 4x + 5 b). c). Bài 2 : Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số Bài 3 : Cho tam giác ABC vuông tại A, AB = 1, AC = 3. Trên cạnh AC lấy các điểm D; E sao cho AD = DE = EC. a). Tính độ dài BD. b). CMR : Các tam giác BDE và CDB đồng dạng c). Tính tổng : ĐỀ SỐ 4 : Bài 1 : Giải các phương trình sau a). b). b). Bài 2 : Tìm x sao cho giá trị của biểu thức không lớn hơn giá trị của biểu thức . Bài 3 : Cho tam giác ABC có AB = 15cm, AC = 21cm. Trên cạnh AB lấy E sao cho AE = 7cm, trên cạnh AC lấy điểm D sao cho AD = 5cm, Chưng minh : a). ABD ACE b). Gọi I là giao điểm của BD và CE. Chứng mimh :IB.ID = IC.IE c). Tính tỉ số diện tích tứ giác BCDE và diện tích tam giác ABC. ĐỀ SỐ 5 : Bài 1 : Giải bất phương trình Bài 2 : Giải các phương trình sau : a). b). Bài 3 : Một người đi xe máy từ A đến B với vận tốc trung bình 30km/h. Lúc về người đó đi với vận tốc 35km/h nên thời gian về nhiều hơn thời gian đi là 30 phút. Tính độ dài quãng đường AB. Bài 4 : Cho ABC vuông tại A, vẽ đường cao AH và trên tia HC xác định điểm D sao cho HD = HB . Gọi E là hình chiếu của điểm C trên đường thẳng AD. a).Tính BH , biết AB = 30cm AC = 40cm. b). Chứng minh AB . EC = AC . ED c).Tính tỉ số
Tài liệu đính kèm: