Bài 21. Cho a,b,c đôi 1 khác nhau và . Tính giá trị của .
Bài 22. Cho a,b,c khác không thỏa mãn : . Tính giá trị của biểu thức
Bài 23. Cho và . Tính giá trị biểu thức:
Bài 24. Cho 3 số a,b,c thỏa mãn điều kiện : abc = 2000. Tính giá trị biểu thức .
Bài 25. Cho 3 số a,b,c khác không và a + b + c = 0. Tính giá trị của biểu thức:
Bài 26. Cho a,b,c đôi một khác nhau. Tính giá trị của biểu thức: .
Bài 27. Cho 3 số a,b,c thỏa mãn: b c, và a + b c và c2 = 2(ac + bc – ab).
Chứng minh rằng: .
Bài 21. Cho a,b,c đôi 1 khác nhau và . Tính giá trị của . Bài 22. Cho a,b,c khác không thỏa mãn : . Tính giá trị của biểu thức . Bài 23. Cho và . Tính giá trị biểu thức: Bài 24. Cho 3 số a,b,c thỏa mãn điều kiện : abc = 2000. Tính giá trị biểu thức . Bài 25. Cho 3 số a,b,c khác không và a + b + c = 0. Tính giá trị của biểu thức: . Bài 26. Cho a,b,c đôi một khác nhau. Tính giá trị của biểu thức: . Bài 27. Cho 3 số a,b,c thỏa mãn: bc, và a + b c và c2 = 2(ac + bc – ab). Chứng minh rằng: . Bài 28. Cho biết ax + by + cz = 0; a + b + c = . CMR . Bài 29. Gọi a,b,c là số đo 3 cạnh của 1 tam giác cho biết: a3 + b3 + c3 – 3abc = 0 Hỏi tam giác này là tam giác gì? Bài 30. Cho a,b,c đôi 1 khác nhau. CMR: P = a4(b – c) + b4(c – a) + c4(a – b) luôn khác không. Bài 31. Cho a,b,c thỏa mãn : (a + b – 2c)2 + (b + c – 2a)2 + (c + a – 2b)2 = (a – b)2 + (b – c)2 + (c – a)2. CMR : a=b=c. Bài 32. Gọi a,b,c là độ dài ba cạnh một tam giác. Cho biết: (a + b)(b + c)(c + a) = 8abc CMR: Tam giác đã cho là tam giác đều. Bài 33. Cho a2 + a + 1 = 0. Tính giá trị của biểu thức
Tài liệu đính kèm: