Sáng kiến kinh nghiệm Vẽ thêm yếu tố phụ trong chứng minh một số bài toán hình học ở lớp 7

Sáng kiến kinh nghiệm Vẽ thêm yếu tố phụ trong chứng minh một số bài toán hình học ở lớp 7

A. PHẦN MỞ ĐẦU

I. Lí do chọn đề tài

Toán học có vai trò rất quan trọng đối với đời sống và đối với các ngành khoa học. Nhà tư tưởng người Anh R. Bêcơn đã nói: “Ai không hiểu biết toán học thì không thể hiểu bất cứ một môn khoa học nào khác và không thể phát hiện ra sự dốt nát của bản thân mình”. Việc dạy học môn toán có khả năng đóng góp tích cực vào việc giáo dục học sinh , Nắm được một cách chính xác, vững chắc và có hệ thống những kiến thức và kĩ năng toán học phổ thông cơ bản, hiện đại sát với thực tiễn Việt Nam và có khả năng vận dụng những tri thức đó vào những tình huống cụ thể khác nhau: vào đời sống, vào lao động sản xuất và vào việc học tập các bộ môn khác.

Trong quá trình dạy học toán nói chung cũng như trong quá trình dạy học giải toán hình học nói riêng, người dạy và người học cần phải tạo ra cho mình một thói quen là: sau khi đã tìm được lời giải bài toán dù đơn giản hay phức tạp, cần tiếp tục nghiên cứu tìm ra cái mới hơn, đi tìm mối liên hệ giữa các vấn đề v.v như thế chúng ta sẽ tìm ra được những kết quả bất ngờ thú vị.

 

doc 21 trang Người đăng haiha30 Lượt xem 1555Lượt tải 1 Download
Bạn đang xem 20 trang mẫu của tài liệu "Sáng kiến kinh nghiệm Vẽ thêm yếu tố phụ trong chứng minh một số bài toán hình học ở lớp 7", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
A. PHẦN MỞ ĐẦU
I. Lí do chọn đề tài
Toán học có vai trò rất quan trọng đối với đời sống và đối với các ngành khoa học. Nhà tư tưởng người Anh R. Bêcơn đã nói: “Ai không hiểu biết toán học thì không thể hiểu bất cứ một môn khoa học nào khác và không thể phát hiện ra sự dốt nát của bản thân mình”. Việc dạy học môn toán có khả năng đóng góp tích cực vào việc giáo dục học sinh , Nắm được một cách chính xác, vững chắc và có hệ thống những kiến thức và kĩ năng toán học phổ thông cơ bản, hiện đại sát với thực tiễn Việt Nam và có khả năng vận dụng những tri thức đó vào những tình huống cụ thể khác nhau: vào đời sống, vào lao động sản xuất và vào việc học tập các bộ môn khác. 
Trong quá trình dạy học toán nói chung cũng như trong quá trình dạy học giải toán hình học nói riêng, người dạy và người học cần phải tạo ra cho mình một thói quen là: sau khi đã tìm được lời giải bài toán dù đơn giản hay phức tạp, cần tiếp tục nghiên cứu tìm ra cái mới hơn, đi tìm mối liên hệ giữa các vấn đề v.vnhư thế chúng ta sẽ tìm ra được những kết quả bất ngờ thú vị.
Trong quá trình tìm kiếm lời giải ngoài việc vẽ hình chính xác, tổng quát theo dữ kiện bài toán ( tránh vẽ hình rơi vào trường hợp đặc biệt) đưa về tình huống quen thuộc để có thể vận dụng các kiến thức đã biết thì một trong các biện pháp có hiệu quả là sử dụng yếu tố phụ trong chứng minh hình học thông qua vẽ hình phụ. Kinh nghiệm thức tế cho thấy rằng, không có phương pháp chung chung cho việc vẽ thêm các yếu tố phụ, mà là một sự sáng tạo trong khi giải toán. Nhiều khi người giáo viên đã tìm ra cách vẽ thêm yếu tố phụ nhưng không thể giải thích rõ cho học sinh hiểu được vì sao lại vẽ như vậy. Những câu hỏi đại loại như: tại sao lại nghĩ ra cách vẽ đường phụ như vậy, ngoài cách vẽ này còn cách vẽ nào khác không? Hay tại sao chỉ vẽ như vậy mới giải được bài toán? Gặp phải tình huống như vậy ngưới giáo viên cũng phải rất vất vả để giải thích mà có khi hiệu quả lại không cao, học sinh không nghĩ được cách làm khi gặp bài toán tương tự vì các em chưa biết căn cứ cho việc vẽ thêm yếu tố phụ. Bởi vì việc vẽ thêm các yếu tố phụ cần đạt được mục đích là tạo điều kiện để giải được bài toán một cách ngắn gọn chứ không phải một công việc tùy tiện. Đặc biệt là học sinh lớp 7, vừa chập chững làm quen với toán chứng minh hình học. Việc tiếp thu tốt kiến thức nền sẽ tạo điều kiện thuận lợi cho các em học ở các lớp cao hơn. Hơn nữa, việc vẽ thêm yếu tố phụ phải tuân theo các phép dựng hình cơ bản và các bài toán dựng hình cơ bản.Vì vậy cần phải phát triển cho học sinh năng lực tư duy này.
Với các lí do trên, sau một thời gian nghiên cứu tôi xin trình bày đề tài “ Vẽ thêm yếu tố phụ trong chứng minh một số bài toán hình học ở lớp 7 ” hy vọng sẽ giải quyết vấn đề trên.
II. Mục đích và phương pháp nghiên cứu
Mục đích nghiên cứu
Trong quá trình dạy học cũng như quá trình nghiên cứu. Tôi đã tích luỹ được một số kinh nghiệm giúp ích cho bản thân, dạy học sinh ham thích học tâp“Góp phần nâng cao chất lượng dạy học toán” , hy vọng góp phần giúp học sinh có kĩ năng tốt để giải các bài toán hình học và nếu được sẽ là đề tài tham khảo cho các thầy cô quan tâm đến công việc giảng dạy của mình, giúp học sinh học ngày càng tốt hơn với môn hình học mà đa số các em rất sợ vì nếu không tích luỹ được một số kiến thức cơ bản ,tư duy và kĩ năng thì các em sẽ không học được môn hình học.Nhiệm vụ của chúng ta là phải làm thế nào để “nghề cao quí “ của chúng ta ngày càng cao quí “ vì nó sáng tạo ra những con người có sáng tạo”như cố thủ tướng Phạm Văn Đồng đã nói.
Phương pháp nghiên cứu
Phương pháp nghiên cứu lí luận: tìm hiểu, nghiên cứu tài liệu bồi dưỡng, sách giáo khoa, sách tham khảo.
Phương pháp tổng kết kinh nghiệm ở những học sinh lớp trước để rút kinh nghiệm cho các lớp học sinh sau và vừa dạy vừa đúc rút kinh nghiệm áp dụng.
III. Đối tượng, phạm vi
Đối tượng nghiên cứu
Học sinh lớp 7 trường THCS TT Mỹ Thọ, huyện Cao Lãnh, tỉnh Đồng Tháp.
Phạm vi nghiên cứu
Chương trình hình học 7 cấp THCS.
IV. Kế hoạch thực hiện
Nghiên cứu tài liệu ( 3 tháng)
Viết đề tài ( 3 tháng)
Áp dụng đề tài ( từ năm 2008 đến năm 2010)
B. NỘI DUNG
I. Cơ sở lí luận của đề tài
 Trong khi tìm phương pháp giải toán hình học, ta gặp một số bài toán mà nếu không vẽ thêm đường phụ thì có thể bế tắc. Nếu biết vẽ thêm đường phụ thích hợp tạo ra sự liên hệ giữa các yếu tố đã cho thì việc giải toán sẽ trở nên thuận lợi, dễ dàng hơn. Thậm chí có bài phải vẽ thêm yếu tố phụ mới tìm ra lời giải. Tuy nhiên vẽ thêm yếu tố phụ như thế nào để có lợi cho việc giải toán là điều khó khăn và phức tạp. Kinh nghiệm thực tế cho thấy rằng không có phương pháp chung nhất cho việc vẽ thêm các yếu tố phụ mà là một sự sáng tạo trong khi giải toán. Và điều này lại rất phù hợp với đặc điểm của lứa tuổi học sinh THCS là muốn vươn lên làm người lớn, muốn tự minh khám phá, tìm hiểu trong quá trình nhận thức. Các em có khả năng tự điều chỉnh hoạt động học tập, sẵn sàng tham gia các hoạt động học tập khác nhau nhưng cần phải có sự hướng dẫn, điều hành một cách khoa học và nghệ thuật của thầy, cô giáo. Hình thành và phát triển tư duy tích cực, độc lập, sáng tạo cho học sinh là một quá trình lâu dài.
 Tư duy tích cực, độc lập sáng tạo được thể hiện ở một số mặt sau:
 - Có óc hoài nghi, luôn biết tự đặt các câu hỏi: Tại sao? Vì sao? Do đâu? v.v
 - Biết nhìn nhận và giải quyết vấn đề.
 - Biết tìm phương pháp nghiên cứu giải quyết vấn đề, khắc phục các tư tưởng rập khuôn, máy móc.
 - Có kĩ năng phát hiện những kiến thức liên quan nhau, nhìn nhận một vấn đề ở nhiều khía cạnh khác nhau.
 - Có khả năng khai thác vấn đề mới từ những vấn đề đã biết.
II. Thực trạng nghiên cứu
Qua quá trình công tác giảng dạy, tôi thấy:
Đa số học sinh thường lúng túng ,không biết phải chứng minh một bài hình học như thế nào, bắt đầu từ đâu. Khâu quan trọng là khâu vẽ hình rồi chắt lọc lý thuyết và vận dụng vào thực tế để chứng minh.
Học sinh yếu toán, đặc biệt là chứng minh hình học. Nguyên nhân chủ yếu là do lười học, lười suy nghĩ, lười tư duy trong quá trình học tập.
Không ít học sinh thật sự chăm học nhưng chưa có phương pháp học tập phù hợp, chưa tích cực chủ động chiếm lĩnh kiến thức nên kết quả học tập chưa cao.
Học không đi đôi với hành làm cho bản thân học sinh ít được củng cố, khắc sâu kiến thức, ít được rèn luyện kĩ năng để làm nền tảng tiếp thu kiến thức mới. Do đó năng lực các nhân không được phát huy hết.
Việc chuyên sâu một vấn đề nào đó, liên hệ các bài toán với nhau, phát triển một bài toán sẽ giúp cho học sinh khắc sâu được kiến thức. Quan trọng là nâng cao được tư duy cho các em học sinh, giúp học sinh có hứng thú hơn khi học toán.
Qua nhiều năm thực tế giảng dạy tôi nhận thấy rằng học sinh có lỗ hổng ngay từ khi tiếp cận với bài tập chứng minh hình học ở lớp 7, sau đó ảnh hướng đến lớp 8, lớp 9. Việc vận dụng yếu tố trung gian của học sinh còn lúng túng, chưa nhận biết và biết khi nào thì cần vận dụng vào chứng minh bài toán hình.
Khi học sinh thắc mắc: làm thế nào để vẽ được đường phụ như vậy, ngoài cách vẽ này còn cách vẽ nào khác không?, hay tại sao chỉ vẽ thêm như vậy mới giải được bài toán? Gặp phải những tình huống như vậy giáo viên cũng gặp nhiều khó khăn để giải thích cho học sinh hiểu. 
Từ thực tế giảng dạy tôi thấy rằng: để giải quyết vấn đề này một cách triệt để, mặt khác lại nâng cao năng lực giải toán và bồi dưỡng khả năng tư duy tổng quát cho học sinh, tốt nhất là ta nên trang bị cho các em những cơ sở của việc vẽ thêm đường phụ và một số phương pháp thường dùng khi vẽ thêm đường phụ, cách nhận biết một bài toán hình học phải vẽ thêm đường phụ.
III. Giải quyết vấn đề
 1.Giải pháp thực hiện đề tài 
Việc vẽ thêm các yếu tố phụ phải tuân theo các phép dựng hình cơ bản và các bài toán dựng hình cơ bản:
Dựng một đoạn thẳng bằng một đoạn thẳng cho trước.
Dựng một góc bằng góc cho trước.
Dựng đường trung trực của một đoạn thẳng cho trước, đựng trung điểm của đoạn thẳng cho trước.
Dựng tia phân giác của một góc cho trước.
Qua một điểm cho trước, dựng đường thẳng vuông góc với một đường thẳng cho trước.
Qua một điểm nằm ngoài một đường thẳng cho trước, dựng đường thẳng song song với một đường thẳng cho trước.
Dựng một tam giác biết ba cạnh, biết hai cạnh và góc xen giữa, một cạnh và hai góc kề.
Qua những bài toán mà học sinh giải được, định hướng cho các em tư duy, tập trung nghiên cứu thêm lời giải về kết quả bài toán đó bằng các hình thức:
Kiểm tra kết quả, xem lại cách lập luận.
Nghiên cứu, tìm tòi, tìm các cách giải khác của bài toán, thay đổi dữ liệu bài toán để có được bài toán mới, bài toán đã cho có liên quan đến bài toán đã giải trước đây không?.
Trong đề tài này ngoài việc hướng dẫn học sinh cách vẽ thêm đường phụ, tôi còn minh họa bằng cách khai thác, phát triển kết quả các bài toán quen thuộc. Nhằm giúp học sinh thấy được cái hay, cái đẹp, sự thú vị trong giải toán hình học.
 2. Nội dung cụ thể
 2.1. Phương pháp 1: Trên một tia cho trước, đặt một đoạn thẳng bằng đoạn thẳng cho trước.
 2.1.1. Bài toán 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm các cạnh AB và AC. Chứng minh rằng MN // BC và MN = BC : 2.
1) Phân tích bài toán
Cho DABC, MA = MB, NA = NC. Chứng minh MN // BC và MN = BC : 2.
2) Hướng suy nghĩ
Để chứng minh BC = 2MN, ta tạo ra một đoạn thẳng bằng 2MN, rồi chứng đoạn thẳng đó bằng BC.
Trên tia đối của tia NM lấy điểm D sao choND = MN.
3) Chứng minh
GT D ABC, MA = MB, NA = NC
KL MN // BC và MN = BC : 2
Trên tia đối của tia NM lấy điểm D sao cho ND = MN.
Xét DNMA và DNDC có 
 NM = ND; ( đối đỉnh); AN = NC (gt)
 Do đó DNMA = DNDC (c.g.c)
 Þ AM = DC và 
 Mà là hai góc so le trong Þ AB // CD Þ.
Xét DBMC và DDCM có
 MB = DC (= AM); ; MC là cạnh chung
 Do đó DBMC = DDCM (c.g.c) Þ
 Mà là hai góc so le trong Þ MN // BC
 BC = DM, MN = DM : 2 Þ MN = BC : 2.
4) Nhận xét: Từ kết quả bài toán này ta chứng minh được: Nếu tam giác ABC có M là trung điểm của cạnh AB, N trên cạnh AC và MN song song với BC thì N là trung điểm của cạnh AC.
 2.1.2. Bài toán 2: Chứng minh định lí: Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền. ( Bài 25 tr 67 – sgk toán 7 tập 2)
1) Phân tích bài toán
Tam giác ABC vuông tại A, AM là trung tuyến ứng với cạnh huyền. Chứng minh .
2) Hướng suy nghĩ
Ta cần tạo ra đoạn thẳng bằng 2 AM rồi tìm cách chứng minh BC bằng đoạn thẳng đó. Như vậy dễ nhận ra rằng yếu tố phụ cần vẽ thêm là điểm D sao cho M là trung điểm của AD.
3) Chứng minh
GT
DABC; ;
AM là trung tuyến
KL
 Trên tia đối của tia MA lấy điểm D sao cho: MD = MA.
Xét D MAB và D MDC có:
MA = MD ( theo cách vẽ điểm D)
 (đối đỉnh)
MB =  ... Î BC. Khi đó AH ^ BC và DC ^ BC (gt) Þ AH // DC
 Þ ( so le trong).
Tương tự ta cũng có .
Xét DAHC và DCDA có
 ; AC là cạnh chung; 
Do đó DAHC = DCDA (g.c.g) Þ AH = DC = 12cm
D AHB vuông tại H. Nên theo định lí Pitago ta có: 
D HAC vuông tại H. Nên theo định lí Pitago ta có: 
Do đó: BC = BH + CH = 5 + 9 = 14 cm.
4) Nhận xét: Việc kẻ thêm AH ^ BC, H Î BC sẽ giúp cho ta có được hai tam giác vuông là D AHB vuông tại H, D HAC vuông tại H khi đó ta chỉ cần áp dụng định lí Pitago là có thể tính được BH và CH, từ đó tính được BC.
 2.4.2. Bài toán 2: Cho tam giác ABC ( AB < AC). Từ trung điểm M của BC kẻ đường vuông góc với tia phân giác của góc A cắt tia này tại H, cắt tia AB tại D và AC tại E. Chứng minh rằng BD = CE.
1) Phân tích bài toán
D ABC ( AB < AC). Từ trung điểm M của BC kẻ đường vuông góc với tia phân giác của góc A cắt tia này tại H, cắt tia AB tại D và AC tại E. 
Chứng minh rằng BD = CE.
2) Hướng suy nghĩ
Muốn chứng minh BD = CE, ta cần tạo ra một đoạn thẳng thứ ba rồi chứng minh chúng cùng bằng đoạn thẳng thứ ba đó.
Đường phụ cần vẽ thêm là đường thẳng qua B và song song với AC cắt DE ở F, BF chính là đoạn thẳng thứ ba.
3)Chứng minh
GT
DABC; AB < AC; 
AH là tia phân giác của góc BAC
DE ^ AH ;
KL
BD = CE
Vẽ đường thẳng qua B và song song với AC, gọi F là giao điểm của đường thẳng này với đường thẳng DE.
Ta có: BF // CE ( so le trong)
Xét D MBF và D MCE có: 
; MB = MC ( gt); ( đối đỉnh)
Þ D MBF = D MCE (g . c . g) Þ BF = CE ( 2 cạnh tương ứng) (1) 
Mặt khác ta có D ADE có AH ^ DE và AH cũng là tia phân giác của ( gt)
Do đó: D ADE cân tại A Þ 
Mà BF // CE Þ ( đồng vị). Do đó : 
D BDF cân tại B Þ BF = BD (2) 
Từ (1) và (2) suy ra: BD = CE
4) Nhận xét
Cách vẽ đường phụ trong bài toán này nhằm tạo ra đoạn thẳng thứ ba cùng bằng hai đoạn thẳng cần chứng minh. Đây là cách rất hay sử dụng trong nhiều bài toán. Cách giải này cũng được áp dụng để giải một số bài toán rất hay trong chương trình THCS.
 2.5. Phương pháp 5: Phương pháp tam giác đều.
Đây là một phương pháp rất đặt biệt, nội dung của nó là tạo thêm được vào trong hình vẽ các cạnh bằng nhau, các góc bằng nhau giúp cho việc giải toán được thuận lợi. Bài toán sau đây là một ví dụ điển hình.
 Bài toán: Cho tam giác ABC cân tại A có . Trên cạnh AB lấy điểm D sao cho AD = BC. Chứng minh .
1) Phân tích bài toán
D ABC cân tại A, , AD = BC ( D Î AB).
Yêu cầu chứng minh .
2) Hướng suy nghĩ
Bài cho tam giác ABC cân tại A có , suy ra góc ở
Đáy là .
Ta thấy là số đo mỗi góc của tam giác đều.
Vậy ta vẽ tam giác đều BMC.
3) Chứng minh
GT
DABC; AB = AC; 
AD = BC (D ÎAB)
KL
DABC có AB = AC; ( gt)
Suy ra: 
Vẽ tam giác đều BCM ( M và A cùng thuộc nửa mặt phẳng bờ BC).
Ta được: AD = BC = CM.
D MAB = D MAC ( c . c . c) Þ 
Xét DCAD và DACM có:
AD = CM ( chứng minh trên)
( = 200)
AC là cạnh chung
Þ DCAD = DACM ( c . g . c )
Þ
Vậy .
4) Nhận xét
Đề bài cho tam giác cân ABC có góc ở đỉnh là , suy ra góc ở đáy là . Ta thấy là số đo mỗi góc của tam giác đều. Chính sự liên hệ này gợi ý cho ta vẽ tam giác đều BCM vào trong tam giác ABC. Với giả thiết AD = BC thì vẽ tam giác đều như vậy giúp ta có mối liên hệ bằng nhau giữa AD với các cạnh của tam giác đều, từ đó chứng minh bằng nhau là quá dể dàng.
IV. Hiệu quả áp dụng
Trong quá trình dạy học hình học, tôi đã áp dụng đề tại này không chỉ đề dạy và bồi dưỡng cho học sinh khá giỏi mà còn linh hoạt dạy cho học sinh đại trà. Đặc biệt là đối với học sinh lớp 7, bắt đầu làm quen với chứng minh hình học. Tuy lúc đầu các em còn ngại học hình và nói chung rất sợ các bài toán chứng minh. Hầu như học sinh chỉ có ý thức làm bài tìm một lời giải và dừng lại không suy nghĩ thêm sau khi có kết quả của bài toán, thỏa mãn với chính mình. Các em chưa thấy được tác dụng mạnh của việc nhìn bài toán dưới nhiều góc độ, nhiều khía cạnh khác, rèn cho minh được thói quen suy nghĩ tích cực, phát triển tư duy sáng tạo, tính kiên trì, độc lập (những đức tính tốt và cần thiết của người học toán). Song, qua một thời gian kiên trì, linh hoạt áp dụng đề tài và dạy học sinh theo ý tưởng trên, đến nay, hầu hết các em đã tham gia, hưởng ứng một cách tích cực, chủ động, vận dụng kiến thức khá thành thạo khi làm một số dạng bài có liên quan từ dễ đến khó. Quan trọng hơn, các em không còn cảm thấy hình học đáng ngại, đáng sợ nữa. Do đó, trong học toán nói chung và hình học nói riêng các em đã nhiệt tình, chủ động, tích cực hơn, có nhiều phát hiện thể hiện sự tìm tòi, sáng tạo bước đầu rất tích cực.
Thực tế, tôi đã sử dụng vào giảng dạy cho khối 7 nhiều năm học liền gần đây thì kết quả cho thấy học sinh đều có ý thức thi đua nhau học tập, rất hào hứng phát biểu các suy nghĩ, tìm tòi, phát hiện của mình về cách giải khác, bài toán mới, . Và tôi thấy tinh thần học tập của các em sôi nổi, phấn khởi hơn, khả năng tự nghiên cứu toán học của các em được phát huy một cách tích cực; kết quả học tập môn toán, nhất là hình học có nhiều tiến bộ. Các em không những nắm vững kiến thức trong SGK, các em còn có cố gắng trong việc tìm hiểu giải các bài toán nâng cao, các bài toán khó, bước đầu có thói quen tốt: biết chịu khó, tích cực tìm tòi khai thác, phát triển các bài toán cho trước.
Cụ thể: kết quả chất lượng môn toán khối 7 ở các năm áp dụng đề tài này như sau:
Giỏi
Khá
TB
Yếu
Kém
Năm đầu tiên áp dụng
30%
42%
25%
3%
Năm thứ hai áp dụng
37%
40%
22%
1%
Năm thứ ba áp dụng
41%
44%
15%
C. KẾT LUẬN
I. Ý nghĩa của đề tài
Việc nhìn nhận và chứng minh được một bài toán hình học góp phần rất quan trọng trong việc nâng cao năng lực tư duy cho học sinh khi học môn Toán- nhất là việc bồi dưỡng học sinh giỏi. Qua quá trình giảng dạy và nghiên cứu, bản thân tôi nhận thấy:
Các giáo viên giảng dạy toán đều đánh giá cao tầm quan trọng của việc chứng minh một bài toán hình học mà học sinh bằng lập luận, phân tích  đã giải được. Mở rộng, phát triển thêm các bài toán khác (đơn giản hoặc thường là phức tạp hơn) nhằm phát triển tư duy sáng tạo, linh hoạt, độc lập, tích cực suy nghĩ cho cả người dạy và người học.
Trong quá trình giảng dạy và học tập toán,việc khai thác, tìm hiểu sâu các cách giải khác nhau, kẻ thêm nhiều đường phụ. Nó không chỉ giúp chúng ta nắm bắt kĩ kiến thức của một dạng toán mà nó còn nâng cao tính khái quát, đặc biệt hóa, tổng quát hóa một bài toán, từ đó phát triển tư duy, nâng cao tính sáng tạo, linh hoạt cho các em học sinh, giúp cho học sinh nắm chắc, hiểu sâu rộng kiến thức hơn một cách logic, khoa học, tạo hứng thú khoa học yêu thích bộ môn toán hơn.
Sau một thời gian kiên trì, nghiêm túc và nỗ lực thực hiện với sự giúp đỡ của đồng nghiệp, tôi đã hoàn thành sáng kiến kinh nghiệm với đề tài “Vẽ thêm yếu tố phụ trong chứng minh một số bài toán hình học lớp 7”. Tôi mong muốn được học hỏi, trao đổi thêm cùng tất cả đồng nghiệp và bạn đọc quan tâm vần đề này. Đồng thời, tôi cũng hi vọng đề tài này sẽ đóng góp một phần nhỏ trong việc bổ sung hiểu biết, góp phần làm tài liệu tham khảo cho công tác giảng dạy toán cũng như học toán, từ đó nâng cao được chất lượng dạy và học môn toán trong nhà trường.
II. Khả năng áp dụng
Với đối tượng học sinh trung bình trở xuống khả năng lĩnh hội kiến thức, tư duy, nhận thức chậm nên sự chuyển tải kiến thức rất khó khăn, nhất là dạng toán chứng minh hình học, sử dụng yếu tố phụ. Do vậy cần có thời gian và phải vận dụng linh hoạt, thường xuyên, kiên trì và cần có nhiều tài liệu tham khảo liên quan.
Muốn dạy học sinh biết cách “vẽ thêm yếu tố phụ trong chứng minh hình học”, bản thân GV phải thường xuyên thức hiện điều độ, liên tục tìm tòi, nghiên cứu, học hỏi kinh nghiệm qua đồng nghiệp, sách, báo và đặc biệt là qua các trang Web có liên quan ; GV cần có sự chủ động, có kế hoạch trong từng ngày, từng giờ lên lớp.
III. Bài học kinh nghiệm
Để chất lượng học tập của học sinh ngày càng nâng cao người giáo viên cần nắm vững kiến thức bài dạy, kiến thức chương trình, phải tốn thời gian suy nghĩ tạo ra những tình huống dẫn dắt học sinh để các em học tập bằng cách tự học là chính. Trong quá trình giảng dạy thực hành kiểm nghiệm giáo viên phải biết tích lũy rút ra nhiều điều bổ ích cho mình. Bên cạnh đó cần phải thường xuyên kiểm tra nắm bắt thông tin qua việc học tập kinh nghiệm của đồng nghiệp, tham gia nghiêm túc việc tự học, tự bồi dưỡng và nghiên cứu các chuyên đề để bổ sung một cách hợp lý chắc chắn việc nâng cao chất lượng học sinh qua các bộ môn nói chung và môn Toán nói riêng là một việc làm có thể.
Giáo viên phải nắm vững kiến thức, phương pháp có liên quan đến các yếu tố trung gian nhiều hơn.
Trong các phương pháp, các dạng bài tập phải rèn luyện cho học sinh tính cẩn thận, tư duy sáng tạo, kỹ năng phân tích và áp dụng.
Thường xuyên dự giờ đồng nghiệp để rút kinh nghiệm cho mình.
Thường xuyên cập nhật thông tin nhất là Thư viện đề thi và đề kiểm tra trên Web.
IV. Đề xuất kiến nghị
Để đạt được kết quả cao trong quá trình giảng dạy tôi rất mong các cấp lãnh đạo tạo điều kiện tốt hơn về cơ sở vật chất, đồ dùng dạy học và tổ chức các cuộc thảo luận chuyên môn để mỗi giáo viên có thêm nhiều kinh nghiệm để tổ chức giờ học tốt hơn.
Việc khai thác, phát triển từ bài toán quen thuộc đã biết, giúp cho học sinh định hướng tìm ra lời giải một bài toán hình học là một vấn đề rất quan trọng và không thể thiếu được trong công tác dạy học toán nói chung và dạy hình học nói riêng. Phong trào thi viết sáng kiến kinh nghiệm trong các trường học là một phong trào có tác dụng tốt, rất có ý nghĩa, đặc biệt là trong xu thế thời đại đang rất cần sự sáng tạo, chủ động, tích cực trên mọi lĩnh vực công tác hiện nay. Vì vậy, tôi mạnh dạn và mong muốn Phòng giáo dục đào tạo và cấp trên duy trì phong trào này, khích lệ động viên các tập thể, cá nhân có những sáng kiến hữu hiệu, tích cực; có hình thức phổ biến, trao đổi về các sáng kiến hay tới đông đảo giáo viên.
Tuy đã cố gắng nhưng do kinh nghiệm của bản thân còn nhiều hạn chế nên nội dung đề tài này chắc chắn không tránh khỏi sai sót. Rất mong được sự tra đổi, đóng góp ý kiến của các thầy, cô giáo để đề tài được hoàn thiện hơn.
 Trªn ®©y lµ nh÷ng ý kiÕn cña b¶n th©n t«i trong qu¸ tr×nh c«ng t¸c. V× thêi gian ng¾n nªn bµi viÕt cã nhiÒu thiÕu sãt. RÊt mong ®­îc sù gãp ý, rót kinh nghiÖm cña quý b¹n ®äc ®Ó s¸ng kiÕn cña t«i ®­îc hoµn thiÖn h¬n vµ ®i vµo thùc tiÔn.
TT Mỹ Thọ Ngày 03 tháng 03 năm 2012
 Người viết
 Trần Trịnh Phú Cường
TÀI LIỆU THAM KHẢO
SGK Toán 7 – NXBGD
SBT Toán 7 – NXBGD
Phương pháp dạy học môn Toán 7 – NXBGD (dùng cho hệ CĐSP)
Nâng cao và phát triển Toán 7 – NXBGD
Vẽ thêm yếu tố phụ để giải một số bài toán hình học 7 – Nguyễn Đức Tấn – NXBGD.
Xác nhận của hội đồng xét duyệt sáng kiến kinh nghiệm cấp Trường
Xác nhận của hội đồng xét duyệt sáng kiến kinh nghiệm cấp Huyện

Tài liệu đính kèm:

  • docVe them yeu to phu trong chung minh mot so bai toanhinh hoc o lop 7.doc