Sáng kiến kinh nghiệm Hướng dẫn học sinh vẽ đường phụ trong giải toán Hình học Khối 8 - Năm học 2010-2011 - Tạ Thị Lũy

Sáng kiến kinh nghiệm Hướng dẫn học sinh vẽ đường phụ trong giải toán Hình học Khối 8 - Năm học 2010-2011 - Tạ Thị Lũy

Ta có thể đưa dựa trên các cơ sở sau để xác định đường phụ sẽ vễ là đường gì ? và vẽ từ đâu ?

01- Kẻ thêm đường phụ tạo nên các hình rồi sử dụng định nghĩa hoặc tính chất các hình để giải quyết bài toán.

02- Kẻ thêm đường phụ để tạo nên các tình huống phù hợp với một định lý để giải quyết bài toán.

03- Kẻ thêm đường phụ để tạo ra khâu trung gian nhằm liên kết các mối quan hệ để giải quyết bài toán.

04- Kẻ thêm đường phụ để sử dụng phương pháp chứng minh phản chứng.

05. Kẻ thêm các đường phụ để biến đổi kết luận tạo thành các mệnh đề tương đương để giải quyết bài toán.

2.3 Các biện pháp phân tích tìm ra cách vẽ đường phụ:

01. Dựa vào các bài toán đã biết:

Dựa vào các bài toán quen thuộc, các định lý và tính chất đã học , học sinh nghiên cứu giả thiết và kết luận của bài toán, tìm ra các điểm tương đồng rồi từ đó vẽ đường phụ thích hợp để đưa bài toán cần giải quyết về bài toán quen thuộc

Ví dụ1: Cho tam giác cân ABC đáy BC. Lấy trên AB kéo dài một đoạn BD = AB. Gọi CE là trung tuyến của tam giác ABC. CMR: CE = CD.

 

doc 9 trang Người đăng tuvy2007 Lượt xem 666Lượt tải 0 Download
Bạn đang xem tài liệu "Sáng kiến kinh nghiệm Hướng dẫn học sinh vẽ đường phụ trong giải toán Hình học Khối 8 - Năm học 2010-2011 - Tạ Thị Lũy", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
phòng giáo dục và đào tạo đoan hùng
Trường THCS vân đồn
---------------@&?---------------
sáng kiến kinh nghiệm
Hướng dẫn học sinh vẽ đường phụ 
trong giải toán hình học
********
 Họ và tên giáo viên: Tạ Thị Luỹ
 Tổ chuyên môn: Khoa học tự nhiên
Năm học : 2010 - 2011
*********
I. Những vấn đề chung
1. Lý do viết sáng kiến kinh nghiệm.
1.1- Cơ sở lý luận:
Các bài toán hình học có lời giải phải kẻ thêm đường phụ là các bài toán khó đối với với học sinh THCS. Bởi vì để giải các bài toán dạng này không chỉ yêu cầu học sinh nắm vững kiến thức mà nó còn đòi hỏi học sinh cần có một kỹ năng giải toán nhất định, có sự sáng tạo nhất định. Để tạo ra được một đường phụ liên kết tường minh các mối quan hệ toán học giữa các điều kiện đã cho (giả thiết) với điều kiện cần phải tìm (kết luận) đòi hỏi phải thực hiện các thao tác tư duy: Phân tích, tổng hợp, so sánh, tương tự hoá, đặc biệt hoá,... Hay nói cách khác giải một bài toán phải kẻ thêm đường phụ là một sáng tạo nhỏ, là một biểu hiện ở mức độ cao của kỹ năng, thể hiện các tình huống hình học phù hợp với một định nghĩa, định lý nào đó... hay còn gọi là quy lạ về quen. ở đó khoảng cách từ lạ đến quen càng xa thì mức độ sáng tạo càng lớn. Do đó việc học tốt các bài toán hình có lời giải phải kẻ thêm đường phụ có tác dụng rất lớn trong việc phát triển năng lực trí tuệ và tư duy khoa học của học sinh.
1.2- Cơ sở thực tiễn:
Giải bài toán hình có kẻ thêm đường phụ đòi hỏi phải thực hiện nhiều các thao tác tư duy. Vì vậy đòi hỏi ở học sinh phải rèn luyện về mặt tư duy hình học thuật phát triển. Do đó trong các định lý ở sách giáo khoa, để chứng minh định lý phải sử dụng việc vẽ đường phụ thì sách giáo khoa (SGK) rất ít đề cập đến, việc làm các ví dụ về bài toán ở trên lớp cũng rất hiếm khi có loại toán dạng này. Tuy nhiên trong các bài tập thì SGK cũng đưa ra khá nhiều dạng toán này và nhất là ở các bài tập nâng cao thì các bài toán khó và hay lại là những bài toán khi giải cần phải kẻ thêm đường phụ.
Trên thực tế, đối với học sinh khi giải các bài toán dạng này cần phải có rất nhiều thời gian nghiên cứu. Do đó việc đi sâu vào nghiên cứu và tìm tòi các cách giải bài toán có vẽ thêm đường phụ đối với học sinh còn rất ít. Còn đối với đa số học sinh việc nắm vững về mục đích, yêu cầu khi vẽ các đường kẻ phụ cũng như kiến thức về một số loại đường phụ là còn rất hạn chế.Vì vậy với trình bày của đề tài “Hướng dẫn học sinh vẽ đường phụ trong giải toán hình học ” là một nội dung tham khảo cho giáo viên để góp phần tạo nên cơ sở cho giáo viên có thể dạy tốt hơn loại toán hình có kẻ thêm đường phụ.
2. Mục đích viết sáng kiến kinh nghiệm:
Việc gợi mở lại cho học sinh các nội dung kiến thức về giải bài toán có kẻ thêm đường phụ là rất cần thiết, trên cơ sở đó giáo viên sẽ cung cấp đầy đủ các kiến thức này cho học sinh. Với việc phân dạng được các bài toán hình mà lời giải có sử dụng đường phụ, đồng thời đi sâu vào hướng dẫn một số bài toán cụ thể là tạo điều kiện để học sinh bổ sung cho mình về trình độ kiến thức, là góp phần gợi về phương pháp giải các bài toán này một cách cụ thể dựa vào mức độ phức tạp của việc kẻ thêm đường phụ.
II. NỘI DUNG
A. Các bước tiến hành.
1. Điều tra:
Trước khi đưa vào thực hiện sáng kiến này đã tiến hành điều tra về hiểu và có kỹ năng giải bài toán hình có lời giải vẽ thêm đường phụ đối với học sinh như sau:
- Đối tượng điều tra: Học sinh lớp 8B trường THCS Vân Đồn, năm học 2010-2011.
- Tổng số học sinh được điều tra: 25 em.
- Thống kê điều tra như sau:
01. Số học sinh nắm được sơ lược các loại đường phụ thường sử dụng trong giải Toán THCS có: 10 em chiếm 40 %
02. Số học sinh nắm được các phép dựng hình cơ bản thường sử dụng trong giải toán THCS có: 6 em chiếm 24%.
03. - Số học sinh dựng được các đường kẻ phụ hợp lý và giải được một số bài toán trong chương trình toán lớp 8 gồm có: 4 em chiếm 16%.
04. Số học sinh lúng túng, chưa giải quyết được các bài toán hình học có vẽ thêm đường phụ trong giải Toán THCS có: 16 em chiếm 64 %
05. Số học sinh thành thạo các dạng toán, có kỹ năng tốt và giải được các bài toán tương đối khó : 0 em chiếm 0% 
2. Quá trình thực hiện:
2.1. Các yêu cầu khi vẽ các đường phụ.
01- Vẽ đường phụ phải có mục đích:
Đường kẻ phụ, phải giúp cho được việc chứng minh bài toán. Muốn vậy nó phải là kết quả của sự phân tích tổng hợp, tương tự hoá, mày mò dự đoán theo một mục đích xác định là gắn kết được mối quan hệ của kiến thức đã có với điều kiện đã cho của bài toán và kết luận phải tìm. Do đó không được vẽ đường phụ một cách tuỳ tiện (cho dù là mày mò, dự đoán) vì nếu đường phụ không giúp ích gì cho việc chứng minh thì nó sẽ làm cho mình vẽ rối ren, làm khó thêm cho việc tìm ra lời giải đúng. Vì vậy khi vẽ đường phụ phải luôn tự trả lời câu hỏi "Vẽ đường phụ này có đạt được mục đích mình muốn không?". Nếu "không" nên loại bỏ ngay.
02- Đường phụ phải là những đường có trong phép dựng hình và phải xác định được.
03. Lựa chọn cách dựng thích hợp đường phụ:
 Đường phụ thườngthỏa mãn các tính chất nào đó , việc lựa chọn đường phụ là rất quan trọng.Tuy cùng là một đường phụ vẽ thêm nhưng do các cách dựng khác nhau nên dẫn đến cách chứng minh cũng khác nhau.
04.Một số loại đường phụ thường được sử dụng trong giải toán hình ở chương trình THCS.
- Đường phụ là điểm: 
- Đường phụ là đường thẳng, đoạn thẳng: 
- Đường phụ là đường tròn:
2.2 Các cơ sở để xác định đường phụ :
Ta có thể đưa dựa trên các cơ sở sau để xác định đường phụ sẽ vễ là đường gì ? và vẽ từ đâu ?
01- Kẻ thêm đường phụ tạo nên các hình rồi sử dụng định nghĩa hoặc tính chất các hình để giải quyết bài toán.
02- Kẻ thêm đường phụ để tạo nên các tình huống phù hợp với một định lý để giải quyết bài toán.
03- Kẻ thêm đường phụ để tạo ra khâu trung gian nhằm liên kết các mối quan hệ để giải quyết bài toán.
04- Kẻ thêm đường phụ để sử dụng phương pháp chứng minh phản chứng.
05. Kẻ thêm các đường phụ để biến đổi kết luận tạo thành các mệnh đề tương đương để giải quyết bài toán.
2.3 Các biện pháp phân tích tìm ra cách vẽ đường phụ:
01. Dựa vào các bài toán đã biết:
Dựa vào các bài toán quen thuộc, các định lý và tính chất đã học , học sinh nghiên cứu giả thiết và kết luận của bài toán, tìm ra các điểm tương đồng rồi từ đó vẽ đường phụ thích hợp để đưa bài toán cần giải quyết về bài toán quen thuộc 
Ví dụ1: Cho tam giác cân ABC đáy BC. Lấy trên AB kéo dài một đoạn BD = AB. Gọi CE là trung tuyến của tam giác ABC. CMR: CE = CD.
A
C
M
D
B
E
Ta chỉ phân tích phần nội dung: Kẻ đường phụ.
Phân tích: 
Từ kết luận của bài toán gợi ý cho ta xét đến trung điểm của CD. 
 Muốn chứng tỏ một đoạn thẳng bằng nửa đoạn thẳng khác thì một trong các cách làm cơ bản là chia đôi đoan thẳng kia và chuyển về bài toán chứng minh hai đoạn thẳng bằng nhau . 
Gọi M là trung điểm của CD ta có CM = MD, vậy ta phải chứng minh CE=CM hoặc CE=DM. Chọn CE = CM. 
Từ sự phân tích tổng hợp ta nối B với M ta suy ra nếu chứng minh được D EBC = D MBC thì ta có được CE=CM là điều phải chứng minh. 
Đến đây điều cần chứng minh đã rõ ràng phải chứng minh D EBC = D MBC, hai tam giác này bằng nhau theo trường hợp c.g.c
Việc hướng dẫn học sinh kẻ đường phụ ta dựa vào sự phân tích trên, ta có thể đưa ra cho học sinh những câu hỏi gợi mở, chẳng hạn:
- Với M là trung điểm của CD, em nào cho biết CE và CM là các cạnh của tam giác nào?
- Vậy để chứng minh CE = CM ta phải kẻ thêm đường phụ nào và chứng minh điều gì?
- Hoặc với học sinh khá, giỏi ta có thể hỏi: Vậy để chứng minh CE = CM ta phải chứng minh điều gì?
02. Kẻ thêm đường phụ để tạo ra khâu trung gian nhằm liên kết các mối quan hệ để giải quyết bài toán:
Đối với trường hợp này (dạng này) thường là các bài toán chứng minh các đường thẳng đồng quy, hai đường thẳng vuông góc, đường trung tuyến của một tam giác, tam giác cân vì có đường cao đồng thời là đường trung tuyến...
Ví dụ2: Bài toán: Cho hình chữ nhật ABCD. Gọi M là trung điểm cạnh CD và N là một điểm trên đường chéo AC sao cho . Gọi F là điểm đối xứng của A qua N, chứng minh:FB ^ AC
E
B
C
I
K
M
F
N
A
D
Ta phân tích nội dung kẻ đường phụ và gợi ý chứng minh.
Phân tích: 
Ta thấy là một góc của DBFC, đối chiếu với định lý: "Tổng 3 góc của một tam giác bằng 180O thì có , nhưng ta chưa thể tính được bằng bao nhiêu độ nên không thể suy ra được số đo góc . Vậy không thể vận dụng định lý trên để chứng minh.
 - Nhưng bài toán cho ta các giả thiết liên quan đến góc vuông và trung điểm của đoạn thẳng , ta có thể liên kết các giả thiết đó lại với nhau để chứng minh bài toán này bằng cách nào? 
Đó là câu hỏi lớn mà giáo viên nên đặt ra cho học sinh và hướng dẫn các em có thể tự đặt ra các câu hỏi như vậy .
 Liệu BF có là đường cao của D BNC được không?
Để chứng minh BF là đường cao của tam giác BNC ta phải chứng minh BF đi qua điểm nào đặc biệt trong tam giác? 
Dựa vào đó ta hiểu rằng phải chứng minh BF đi qua trực tâm của DBNC.
 Do sự phân tích - tổng hợp ta đi đến việc dựng NE ^ BC tại E. 
Gọi giao điểm của NE với BF là I. Ta suy ra rằng nếu chứng minh được CI // MN thì suy ra CI cũng sẽ vuông góc với BN (Vì MN^BN) tức CI là một đường cao của D BNC. Vậy I là trực tâm của D BNC (Vì I º NE ầ CK). Do đó suy ra điều phải chứng minh là: BF ^ AC
Tóm lại việc kể thêm NE^ BC tại E là nhằm tạo ra điểm I º NE ầ BF để chứng minh I là trực tâm của D BNC.
Từ sự phân tích trên ta có thể dựa vào đó đề ra một hệ thống câu hỏi gợi mở cho học sinh tực giác, tích cực tìm lấy lời giải. Chẳng hạn có thể sử dụng những câu hỏi như:
- Để chứng minh BF vuông góc với AC ta có thể chứng minh BF là đường gì của D BNC?
- Để chứng minh BF đi qua trực tâm của DBCN thì ta phải có điểm nào?
- Ta phải kẻ thêm đường phụ nào để có một điểm là giao của BF với một đường cao của D BNC?
- Với NE là đường cao của D BNC và NE ầ BF tại I, ta phải chứng minh I là điểm có tính chất gì?
 Ví dụ3: Cho ABC. M là 1 điểm bất kỳ trong . Nối M với các đỉnh A, B, C cắt các cạnh đối diện lần lượt tại A’, B’, C’ qua M kẻ đường thẳng song song với BC cắt A’B’; A’C’ tại K và H.
Chứng minh rằng: MK = MH
Đây là một bài toán tương đối khó với học sinh . Sau khi đã tìm nhiều cách chứng minh không có kết quả . Ta chú ý đến giả thiết của bài toán chỉ cho ta các yếu tố đồng quy và song song. Giả thiết của định lý nào gần với nó nhất?
Câu trả lời mong đội ở đâylà định lý Talet
ở đây KH // BC. Đoạn thẳng BC được chia thành mấy đoạn nhỏ ?
Thiết lập quan hệ giữa MH, MK với các đoạn BA’ và CA’,BC
Cần phải xác định thêm các điểm nào?
Điểm P và Q là giao của KH với AB và AC
Ta có lời giải như sau
 Giả sử HK cắt AB, AC tại P, Q. Theo định lý Talét
03. Dựa vào biến đổi đại số để xác định đường phụ 
 Ví dụ 4: Cho ABC có Chứng minh rằng:
BC2 = AC2 + AC.AB
Hướng dẫn: - Các định lý hoặc tính chất nào giúp ta các công thức liên quan đến công thức cần chứng minh ?
Câu trả lời đầu tiên sẽ là định lý Pitago vì công thức của nó rất gần với công thức này , ở đây GV cần hướng dẫn học sih loại bỏ ý định sử dụng định lý Pitago vì không tạo ra được các góc vuông có liên quan đến độ dài của cả ba cạnh ngay được 
Ngoài định lý Pitago còn cách nào khác không?
Câu trả lời mong đợi ở đây là định lý ta lét và tam giác đồng dạng
Hãy biến đổi đại số hệ thức cần chứng minh để đưa về dạng tỷ số để gắn vào tam giác đồng dạng
Đến đây GV có thể yêu cầu học sinh đưa về bài toán quen thuộc của việc chứng minh hệ thức ab= cd dự vào tam giác đồng dạng bằng cách tạo ra một đoạn thẳng bằng AB+AC
-Từ đó học sinh đưa ra hai cách vẽ đường phụ là đặt liên tiếp cạnh AB một doạn bằng AC hoặc đặt cạnh AC một đoạn bằng AB 
? Nên đặt dựa trên điểm nào ? Chọn đặt kề cạnh nào để vận dụng được giả thiết ?
Câu trả lời mong đợi là lấy trên tia đối của tia AC một đoạn bằng AB
Từ đó ta có lời giải
Giải:
Trên tia đối của tia AC lấy D sao cho AD = AB
Khi đó ABC cân tại A nên:
Xét ABC và BDC có:
 chung nên ABC đồng dạng với BDV (g.g)
Như vậy là việc dạy cho học sinh biết cách giải bài toán mà lời giải có kẻ thêm đường phụ không chỉ đơn thuần là đưa ra một số bài giải mẫu cho học sinh mà phải giúp học sinh nắm vững các yêu cầu khi vẽ đường phụ, sau đó phân dạng bài toán rồi mới đưa vào gợi mở để cho học sinh tìm được lời giải cho từng bài toán cụ thể. Trong quá trình đó dần dần hình thành cho học sinh kỹ năng vẽ đường phụ trong giải các bài toán hình học. 
2.4 Một số bài tập đã hướng dẫn học sinh giải 
Bài 1: Tính cạnh của hình thoi ABCD biết bán kính đường tròn ngại tiếp cac tam giác ABC và ABD lần lượt là 3 và 4
Bài 2 : Cho tam giác nhọn ABC cân tại A . Đường cao BH 
 Chứng minh rằng : 
Bài 3: Cho tam giác ABCcân tại A có .Chứng minh rằng : 
Bài 4 : Cho tam giác ABC vuông tại A 
 Chứng minh rằng : với p là nửa chu vi của tam giác ABC
Bài 5 :Cho góc nhọn xOy . Trên hai cạnh Ox và Oy lần lượt lấy hai điểm M và N 
 sao cho OM +ON = 2a không đổi . 
a ) Chứng minh rằng : Khi M ,N chạy trên Ox , Oy thì trung điểm của MN luôn nằm trên một đoạn thẳng cố định 
b ) Xác định vị trí của M và N để tam giác OMN có diện tích lớn nhất 
Bài 6: Cho DABC nội tiếp đường tròn (O). gọi D;E;F thứ tự là trọng điểm của BC;AC và AB. Kẻ các đường thẳng DP' // OA; EE'//OB; EF//OC. Chứng minh các đường thẳng DD'; EE'; FE' đồng quy.
Bài 7: Cho đường tròn (O) và một điểm A bên trong đường tròn đó kẻ cát tuyến BAC bất kỳ.
 Gọi (P) là đường tròn đi qua A và tiếp xúc với (O) tại B
 (Q) là đường tròn đi qua A và tiếp xúc với (O) tại C
a) Tứ giác APOQ là hình gì ?
b) Gọi giao điểm thứ hai của (P) và (Q) là E; (E A)
 Tìm tập hợp điểm E khi cát tuyến BAC quay quanh A.
III. Kết quả của đề tài :
 Qua thời gian áp dụng các kiến thức và phương pháp dạy vừa trình bày ở trên đối với 25 em học sinh lớp 8B trường THCS Vân Đồn đã thu được kết quả như sau:
01. Số học sinh nắm được các loại đường phụ thường sử dụng trong giải toán THCS có: 20/25 = 80%.
02. Số học sinh nắm được các phép dựng hình cơ bản thường được sử dụng trong giải toán THCS có: 	18/25 = 72%.
03. Số học sinh vẽ (dựng) được các đường phụ hợp lý và giải được một số bài toán hình trong chương trình Toán lớp 8 có: 11/25 = 44%.
04. Số học sinh thành thạo các dạng toán, có kỹ năng tốt và giải được các bài toán tương đối khó : 5/25 em chiếm 20% 
 Trong quá trình dạy học sinh theo phương pháp này , tôi đã thu được nhiều kết quả tốt . 
Bảng kết quả khảo sát sau cho thấy rõ điều đó:
Tổng số
Học sinh
Giỏi
Khá
TB
Yếu - Kém
Đầu năm
26
2 = 7,6 %
6 = 23%
13 = 50%
5 = 19,4%
Học kỳ I
25
3 = 12%
9 = 36%
10 = 40%
3 = 12%
Giữa KHII
25
3 = 12%
12= 46%
 8 = 34%
2 = 8%
Kinh nghiệm rút ra
Các bài toán hình học có lời giải cần phải kẻ thêm đường phụ tuy là những bài toán khó nhưng lại là những bài toán hay, nó giúp cho tư duy lo gic của học sinh phát triển, giúp rèn luyện cùng một lúc nhiều thao tác tư duy cho học sinh.
Đây là một đề tài nghiên cứu có thể nghiên cứu ở phạm vi rộng, hẹp tuỳ ý và đề tài này mang tính ứng dụng rộng rãi trong các trường THCS.
Khi áp dụng đề tài này giáo viên cần phải lưu ý là trước hết phải giúp học sinh nắm vững được các yêu cầu về vẽ (dựng) các đường phụ sau đó mới phân dạng bài toán và đưa ra hướng dẫn một số bài toán cụ thể theo từng dạng đã chia. Việc củng cố kỹ cho học sinh về phép dựng hình cơ bản là rất cần thiết trong nội dung thực hiện.
Do điều kiện chưa cho phép, đề tài chưa nghiên cứu được ở phạm vi rộng và cũng chưa thể trình bày được hết các phương pháp dạy đối với các dạng bài toán đã nêu do gới hạn của đề tài . Rất mong các đồng nghiệp có thể nghiên cứu tiếp đề tài này với nội dung phong phú hơn. Mong được sự góp ý chân thành của bạn đọc./.
Vân Đồn, ngày 20 tháng 03 năm 2011
 Người viết 
 Tạ Thị Luỹ

Tài liệu đính kèm:

  • docSKKN toan 8(8).doc