Kế hoạch bài dạy Đại số Lớp 8 - Tiết 4 đến 52 - Năm học 2008-2009 - Trịnh Huy Trọng

Kế hoạch bài dạy Đại số Lớp 8 - Tiết 4 đến 52 - Năm học 2008-2009 - Trịnh Huy Trọng

- HS thực hiện ?1.

(a + b)(a + b) = a.a + a.b + b.a + b.b = a2 + ab + ba + b2 = a2 + 2ab + b2 = (a + b)2.

- GV: (a + b)(a + b) viết thành bình phương của biểu thức nào ?. Khi đó ta có được điều gì?

- HS: (a + b)2 = a2 + 2ab + b2.

- GV. Không mất tính tổng quát nếu A, B là hai biểu thức ta có được hằng đẳng thức: “Bình phương của một tổng”.

- GV yêu cầu HS giải thích HĐT qua hình 1.

- HS: Hình vuông lớn có cạnh là a + b nên diện tích là (a + b)2. Còn hai hình vuông nhỏ có diện tích lần lượt là a2 và b2, hai hình chữ nhật có diện tích là 2ab. Vậy ta có điều phải giải thích.

- HS trả lời ?2 và cho biết sự khác nhau giữa

(A + B)2 và A2 + B2. 1. Bình phương của một tổng

Với A,B là hai biểu thức ta có:

(A + B)2 = A2 + 2A.B + B2.

Gọi là bình phương của một tổng hai biểu thức A và B

áp dụng:

a. (a + 1)2 = a2 + 2a + 1

b. x2 + 4x + 4 = x2 + 2.x.2 + 22 = (x + 2)2

 

doc 113 trang Người đăng tuvy2007 Lượt xem 587Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Kế hoạch bài dạy Đại số Lớp 8 - Tiết 4 đến 52 - Năm học 2008-2009 - Trịnh Huy Trọng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 (Nhận chuyên môn từ 08.09.09)
Tiết 4: Những hằng đẳng thức đáng nhớ.
Ngày soạn: 06.09.08.
Ngày dạy: 08.09.08.
i. Mục tiêu .
- Nắm được các hằng đẳng thức: Bình phương của một tổng, bình phương của một hiệu, hiệu hai bình phương
- Biết áp dụng hằng đẳng thức trên để tính nhẩm, tính hợp lý
- Phân biệt cụm từ “bình phương của một tổng” và “Tổng hai bình phương”;” Bình phương của một hiệu” và “Hiệu hai bình phương”.
ii. Chuẩn bị. 
iii. Tiến trình dạy.
Hoạt động 1. Kiểm tra bài cũ.
Phát biểu quy tắc nhân đa thức với đa thức. Giải bài tập 15.
Hoạt động của gv và hs.
Nội dung cần ghi nhớ.
Hoạt động 2. Bình phương của một tổng.
- HS thực hiện ?1.
(a + b)(a + b) = a.a + a.b + b.a + b.b = a2 + ab + ba + b2 = a2 + 2ab + b2 = (a + b)2.
- GV: (a + b)(a + b) viết thành bình phương của biểu thức nào ?. Khi đó ta có được điều gì?
- HS: (a + b)2 = a2 + 2ab + b2.
- GV. Không mất tính tổng quát nếu A, B là hai biểu thức ta có được hằng đẳng thức: “Bình phương của một tổng”.
- GV yêu cầu HS giải thích HĐT qua hình 1.
- HS: Hình vuông lớn có cạnh là a + b nên diện tích là (a + b)2. Còn hai hình vuông nhỏ có diện tích lần lượt là a2 và b2, hai hình chữ nhật có diện tích là 2ab. Vậy ta có điều phải giải thích.
- HS trả lời ?2 và cho biết sự khác nhau giữa
(A + B)2 và A2 + B2.
1. Bình phương của một tổng
Với A,B là hai biểu thức ta có:
(A + B)2 = A2 + 2A.B + B2. 
Gọi là bình phương của một tổng hai biểu thức A và B
áp dụng: 
a. (a + 1)2 = a2 + 2a + 1
b. x2 + 4x + 4 = x2 + 2.x.2 + 22 = (x + 2)2
Hoạt động 3. Bình phương của một hiệu.
- GV: Trong công thức (1) nếu thay B bởi -B em có điều gì?
- HS: Lúc đó: = A2 + 2A(-B) + (-B)2 = A2 - 2AB + B2.
- HS trả lời?4 và làm áp dụng.
“Bình phương một hiệu hai biểu thức bằng bình phương biểu thức thứ nhất trừ đi tích biểu thức thứ nhất và biểu thức thứ hai và cộng với bình phương biểu thức thứ hai.
2. Bình phương của một hiệu.
(A - B)2 = A2 - 2A.B + B2. Gọi là bình phương của một hiệu hai biểu thức A và B.
áp dụng:
a. (x - )2 = x2 - 2.x. + = x2 - x + .
b. (2x - 3y)2 = (2x)2 - 2.2x.3y + (3y)2 
 = 4x2 - 12xy + 9y2.
Hoạt động 4. Hiệu hai bình phương.
HS: Thực hiện ?5. (a + b)(a - b) = a2 - b2.
- GV: Dạng a2 - b2 gọi là gì?.
- GV: Khi thay a và b bởi hai biểu thức A và B ta có điều gì?
- HS thực hiện ?6
3. Hiệu hai bình phương
A2 - B2 = (A + B)(A - B).
áp dụng. 
a. (x + 1)(x - 1) = x2 - 1.
b. (x - 2y)(x + 2y) = x2 - (2y)2 = x2 - 4y2.
c. 56.64 = (60 - 4)(60 + 4)= 602 - 42 
 =3600 - 16 = 3584.
Hoạt động 5. Luyện tập củng cố.
- GV nêu nhận xét (A - B)2 = (B - A)2
- HS làm bài 16, 18.
- GV hướng dẫn bài tập 17
Bài 16. 
a. (x + 1)2 
b. (3x + y)2	
c. (5a - 2b)2 hay (2b - 5a)2	
d. (x -)2
Bài 18: 
a. (x + 3y)2	
b. (x - 5y)2
Hoạt động 6. Hướng dẫn học ở nhà.
- Học thật kỹ các hằng đẳng thức đã học. 
- Làm các bài tập từ 20 đến 25. 
IV. Rút kinh nghiệm. 
.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Tiết 5. Luyện tập.
Ngày soạn: 06.09.08.
Ngày dạy: 08.09.08.
I/ Mục tiêu.
- Củng cố kiến thức về các hằng đẵng thức: Bình phương của một tổng, bình phương của một hiệu, hiệu hai bình phương.
- HS có kỹ năng vận dụng các hằng đẳng thức đã học vào bài tập.
- Rèn hs tính cẩn thận, tính chính xác.
ii. chuẩn bị.
Iii. tiến trình dạy.
 Hoạt động 1. Kiểm tra bài cũ.
- Viết các HĐT bình phương của một tổng, bình phương của một hiệu và hiệu hai bình phương. 
- áp dụng: Tính (2x + 1)2; ( x - 1)2, ( 2x + 3).( 2x - 3 ); ( 4x )2 - 9.
Hoạt đông 2. Luyện tập.
Hoạt động của GV và hs
Nội dung cần ghi nhớ.
- HS làm bài 16 sgk.
- GV: Câu a, b dựa vào hằng đẵng thức nào?
câu c, d dựa vào hằng đẵng thức nào?
HS: Câu a, b dựa vào HĐT bình phương của một tổng, câu c dựa vào HĐT bình phương của một hiệu.
- HS làm bài tập 20, 22.
- GV: Cần vận dụng các HĐT nào?
- HS lên bảng trình bày bài 22.
HS lên bảng trình bày bài 23.
- Bài 23: HS hoạt động nhóm.
- GV gợi ý: Biến đổi một vế ra vế còn lại.
- GV khắc sâu cho HS các công thức này, nói về mối liên quan giữa bình phương của một tổng và bình phương của một hiệu.
 Bài 16:
a. x2 + 2x + 1 = (x + 1)2
b. 9x2 + y2 + 6xy = (3x)2 + 2.3x.y + y2 
= (3x + y)2
25a2 + 4b2 - 20ab = (5a)2 - 2.5a.2b + (2b)2 
= (5a - 2b)2 hoặc = (2b - 5a)2
c. x2- x + = x2 - 2. .x + 
= ( x - )2
 Bài 20. Sai (HS tự giải thích).
 Bài 22.
a. 1012 = (100 + 1)2 = 1002 + 2.100.1 + 12 
 = 10201.
b. 1992 = (200 - 1)2 
 = 2002 - 2.200.1 + 12 = 39601.
c. 47.53 = (50 - 3)(50 + 3)
 = 502 - 32 = 2491
Bài 23.
a. (a + b)2 = (a - b)2 + 4ab.
Ta có: VT = (a - b)2 + 4ab = a2 - 2ab + b2 + 4ab = a2 + 2ab + b2 = (a + b)2 = VT.
b. (a - b)2 = (a + b)2 - 4ab.
Ta có: VP = (a + b)2 - 4ab = a2 + 2ab + b2 - 4ab = a2 - 2ab + b2 = (a - b)2.
áp dụng.
a. Tính (a - b)2, biết a + b =7 và a.b = 12.
Ta có: (a - b)2 = (a + b)2 - 4ab = (7)2 - 4.12 
= 49 - 48 = 1.
b. Tính: (a + b)2, biết a - b = 20 và a.b = 3
Ta có: (a + b)2 = (a - b)2 + 4ab 
 = (20)2 + 4.3 = 400 + 12 = 412
Hoạt động 3: Hướng dẫn học ở nhà.
- Xem lại các bài tập đã làm, Làm các bài tập trong SBT.
- Học kỹ các HĐT đã học.
- Đọc bài “Những HĐT đáng nhớ” ( Tiếp theo).
D. Rút kinh nghiệm :
.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Tiết 6: những hằng đẳng thức đáng nhớ (Tiếp).
Ngày soạn: 07.09.08.
Ngày dạy: .09.08.
I. Mục tiêu.
- Nắm được các hằng đẳng thức: Lập phương của một tổng, lập phương của một hiệu.
- Biết áp dụng hằng đẳng thức trên để tính nhẩm, tính hợp lý.
- Phân biệt cụm từ “Lập phương của một tổng” và “Tổng hai lập phương”;” Lập phương của một hiệu “ và “Hiệu hai lập phương”
ii. chuẩn bị.
Iii. tiến trình dạy.
Hoạt động 1. Kiểm tra bài cũ. Tính. (a + b)2.(a + b). KQ: a3 + 3a2b + 3ab2 + b3.
GV: (a + b)2.(a + b) = (a + b)3 = a3 + 3a2b + 3ab2 + b3. Ta nói đó là lập phương của một tổng. 
Hoạt động của gv và hs.
Nội dung cần ghi nhớ.
Hoạt động 2. Lập phương của một tổng.
- GV Trong công thức ở trên. Nếu ta thay a và b bởi A và B thì công thức trên không có gì thay đổi (A, B là hai biểu thức).
- HS đứng tại chỗ nêu công thức
- HS phát biểu HĐT (4) bằng lời và làm phần áp dụng của ?2.
4. Lập phương của một tổng.
(a + b)3 = a3 + 3a2b + 3ab2 + b3 (4)
?2. a. (x + 1)3 = x3 + 3.x2.1 + 3.x.12 + 13
= x3 + 3x2 + 3x + 1.
b. (2x + y)3 = (2x)3 + 3.(2x)2.y + 3.(2x).y2 + y3 = 8x3 + 12x2y + 6xy2 + y3.
Hoạt động 3. Lập phương của một hiệu.
- HS thực hiện ?3. 
Nhóm 1: Tính (a - b)3 theo cách nhân thông thường.
Nhóm 2. Tính (a - b)3 = [a + (-b)]3.
- Ta thấy: [a + (-b)]3 = a3 - 3a2b + 3ab2 - b3 
và (a - b)3 = a3 - 3a2b + 3ab2 - b3.
- GV: Nếu ta thay a và b bởi hai biểu thức A và B thì công thức trên không có gì thay đổi. 
- HS phát biểu HĐT (5) và làm phần áp dụng.
5. Lập phương của một hiệu.
(a - b)3 = a3 - 3a2b + 3ab2 - b3 (5)
a. (x - )3 = ... = x3 - x2 + x - 
b. (x - 2y)3 = ... = x3 - 6x2y + 12xy2 - 8y3
c. chỉ có khẳng định 1 là đúng.
Nhận xét: Do A - B và B - A là hai số đối nhau nên: lũy thừa bậc hai thì bằng nhau nhưng lũy thừa bậc ba thì đối nhau.
Hoạt động 4. Luyện tập củng cố.
- HS làm bài 26. 
- GV kiểm tra, nhận xét những sai lầm của HS
- Trong bài tập 27. Hãy xét xem trong hai công thức đã học có giống câu a không, em nên làm như thế nào. 
- HS làm bài 27, 28:
- HS hoạt động nhóm làm bài tập 29
Kết quả: “Nhân hậu”
Bài 26.
a. 8x6 + 36x4y + 54x2y2 + 27y3. 	
b. x3 - x2 + x - 27.
Bài 27. 
a. Ta đổi lại như sau: 
 1 - 3x + 3x2 - x3 = ... = (1 - x)3.
b. 8 - 12x + 6x2 - x3 = (2 - x)3
Bài 28. a. 103 = 1000	b. 203 = 8000
Hoạt động 5. Hướng dẫn học ở nhà.
- Học thật kỹ các hằng đẳng thức đã học. Đọc bài “Những HĐT đáng nhớ” (tiếp) SGK trang 14.
- Làm các bài tập trong SBT. 
IV. Rút kinh nghiệm. 
....................................................................................................................................................................................................................................
Tiết 7: những hằng đẳng thức đáng nhớ (Tiếp).
Ngày soạn: 13.09.08.
Ngày dạy: 15.09.08.
I. Mục tiêu.
- Nắm được các hằng đẳng thức: Tổng hai lập phương, hiệu hai lập phương.
- Biết vận dụng các hằng đẳng thức trên vào giải toán.
- Học sinh phân biệt được “Lập phương một tổng” với “Tổng hai lập phương”, “Lập phương của một hiệu” với “Hiệu hai lập phương”, nắm được “Bình phương thiếu của một hiệu” với “Bình phương thiếu của một tổng”.
ii. chuẩn bị.
Iii. tiến trình dạy.
Hoạt động 1. Kiểm tra bài cũ. 
1: Viết HĐT lập phương của một tổng và khai triển (3x - 2y)3
2: Viết HĐT lập phương của một hiệu và viết thành dạng lũy thừa biểu thức: 64 - 48x + 12x2 - x3.
Hoạt động của gv và hs.
Nội dung cần ghi nhớ.
Hoạt động 2. Tổng hai lập phương.
- HS thực hiện ?1 và rút ra công thức.
Ta có: (a + b)(a2 - ab + b2) 
 = a3 - a2b + ab2 + ba2 - ab2 + b3 = a3 + b3.
Hay a3 + b3 = (a + b)(a2 - ab + b2)
- GV: Khi thay hai số thực a, b bởi hai biểu thức A, B ta có điều gì?.
- HS phát biểu bằng lời HĐT.
- HS thưc hiện ?2.
1. Tổng hai lập phương.
Với A,B là hai biểu thức
a3 + b3 = (a + b)(a2 - ab + b2).
 áp dụng. 
a. x3 + 8 = x3 + 23 = (x + 2)(x2 - 2x + 4).
b. (x + 1)(x2 -x + 1) = x3 + 1.
Lưu ý: Ta quy ước gọi biểu thức a2 - ab + b2 là “Bình phương thiếu của một hiệu”.
Hoạt động 3. Hiệu hai lập phương.
- HS thực hiện ?3 và rút ra công thức.
Ta có: (a - b)(a2 + ab + b2) 
= a3 + a2b + ab2 - ba2 - ab2 - b3 = a3 - b3.
Hay a3 - b3 = (a - b)(a2 + ab + b2)
- GV: Khi thay hai số thực a, b bởi hai biểu thức A,B ta có điều gì?.
- HS phát biểu bằng lời HĐT và làm ?4. 
2. Hiệu hai lập phương.
A3 - B3 = (A - B)(A2 + AB + B2).
Ta quy ước gọi biểu thức: A2 + AB + B2 là “Bình phương thiếu của một tổng”.
áp dụng:
a. (x - 1)(x2 + x + 1) = x3 - 1.
b. 8x3 - y3 = (2x)3 - y3 = (2x - y)(4x2 + 2xy + y2).
Hoạt động 4. Luyện tập củng cố.
- GV ghi bảng vế trái của hằng đẳng thức và gọi HS lên bảng ghi phần vế phải cho đúng
1. a3 + b3 = (a + b)(a2 - ab + b2)
2. a3 + b3 = (a ... t động 1. Kiểm tra bài cũ: Giải bài tập 49 SBT.
Tóm tắt lời giải : Gọi quãng đường HN - TH là s (s: km, s > 0).
Thời gian đi: (giờ), Thời gian về: (giờ). Tổng thời gian đi và về (không kể thời gian nghỉ) là: 10h45’ - 2h = 8h. Ta có PT: . Giải PT được s = 150.
Hoạt động của giáo viên
Hoạt động của học sinh.
Hoạt động 2. Ví dụ.
Tóm tắt đề bài: 
Xe máy HN - NĐ: 35km/h. 
Sau 24 phút (h), ô tô NĐ - HN: 45km/h.
Quãng đường HN NĐ: 90 km.
Hỏi sau bao lâu 2 xe gặp nhau.
Giải.
Gọi thời gian từ lúc xe máy khởi hành đến lúc hai xe gặp nhau là x (h). ĐK của x: x > .
Trong thời gian đó, xe máy đi được quãng đường là 35x (km).
Vì ôtô xuất phát sau 24 phút 
Hoạt động 3. 
Hoạt động 4. Luyện tập - Củng cố.
Hoạt động 5. Hướng dẫn học ở nhà.
- Xem lại các bài toán đã giải.
- Học thuộc các bước giải bài toán bằng cách lập phương trình.
- Làm bài tập 36 SGK, bài tập trong SBT.
A/ MụC TIÊU:
 HS nắm vững nhâ quy tắc nhân đa thức với đa thức.
 HS biết trình bày phép nhân đa thức theo các cách khác nhau.
B/chuẩn bị 
 Giáo viên và học sinh chuẩn bị nhân một tổng với một tổng.
C/ tiến trình giảng dạy :
 I/ Kiểm tra bài cũ : Phát biểu quy tắc nhân đơn thức với đa thức ?
 Giải bài tập 1/A.	ĐS : 5x5-x3-x2.
 Học sinh khác làm bài 3/B	ĐS : x=5.
II/ Bài Mới :
 Hoạt động của thầy
 Hoạt động của trò
Ghi Bảng
Giáo viên ghi : Nhân đa thức 
x-2 với đa thức 6x2-5x+1.
Đa thức thứ nhất có mấy hạn tử , đa thức thứ haicó mấy hạn tử .
Nhân mỗi hạn tử của đa thức thứ hai .
Cộng các kết quả vừa tìm .
Từ đó em hãy rút ra quy tắc nhân đa thức với đa thức ? 
Hoạt động 1 : Thực hiện ?1 / SGK .
Giáo viên đặt phép nhân như SGK . Lần lượt thực hiện phép toán .
Hỏi -12x2+10x-2 là kết quả của phép nhân nào ?
6x3-5x2+x là kết quả của phép nhân nào ?
Giáo viên lưu ý đặt đa thức nọ dưới đa thức kia , sao cho các đơn đồng dạng theo cùng một cột .
Vậy nhân đa thức với đa thức có thể thực hiện theo các cách nào .
Hoạt động 2:( nhóm ?2 )
Các nhóm chẵn làm phép nhân theo cột câu a , các nhóm lẻ thực hiện nhân dòng câu b.
Hoạt động 3: ( nhóm ?3.)
Giáo viên lưu ý với x=2,5 ta viết x =thì bài toán đơn giản hơn 
Đa thức thứ nhất có hai hạn tử và thứ hai có ba hạn tử .
HS tiếp tục thực hiện nhân
Và cộng các kết quả .
Muốn nhân một đa thức với một đa thức , ta nhân mỗi hạn tử của đa thức này với từng hạn tử của đa thức kia rồi cộng các tích với nhau .
Kết quả của phép nhân -2 với đa thức 6x2-5x+1.
Kết quả của phép nhân x với đa thức 6x2-5x+1.
Ta có thể nhân theo hàng ngang hay cột dọc.
Các nhóm thực hiện.
Trình giáo viên nhận xét .
Học sinh thực hiện .Kết quả : 4x2-y2
Kết quả =24m2
Quy tắc :
Ví dụ : SGK .
Quy tắc : SGK.
2) áp dụng:
 Hoạt động 4: Giải bài tập tại lớp : Gọi hai em lên bảng giải bài 7a và 7b : 7a)x3-3x2+3x-1. 7b) -x4+7x3-11x2+6x-5. Gọi 2 em làm 8a và b.: 8a) x3y2- x2y+2xy-2x2y3+xy2-4y2; 8b) x3+y3.
Hoạt động 5: Dặn dò : Xem bài đã giải ; làm bài tập 9;10;11;12 . Học sinh giỏi làm bài 14;15.
Đối với bài 9 cần rút gọn biểu thức trước khi thay số , bài 12 cũng vậy.
D/ Rút kinh nghiệm :
I)mục tiêu:
HS nắm vững quy tắc nhân đa thức với đa thức.
HS biết trình bày phép nhân đa thức theo các cách khác nhau.
B/ CHUẩN Bị:
Giáo viên và học sinh chuẩn bị nhân một tổng với một tổng.
C/ TIếN TRìNH GIảNG DạY:
 I/ Kiểm tra bài cũ :
Phát biểu quy tắc nhân đơn thức với đa thức.
Giải bài tập 1/A.	ĐS : 5x5-x3- 1/2x2.
Học sinh khác làm bài 3/B	ĐS : x=5.
II/ Bài Mới :
Hoạt động của thầy
Học động của trò
Ghi Bảng
Giáo viên ghi : Nhân đa thức x-2 với đa thức 6x2-5x+1.
Đa thức thứ nhất có mấy hạn tử , đa thức thứ haicó mấy hạn tử .
Nhân mỗi hạn tử của đa thức thứ hai .
Cộng các kết quả vừa tìm .
Từ đó em hãy rút ra quy tắc nhân đa thức với đa thức ? 
Hoạt động 1 : Thực hiện ?1 / SGK .
Giáo viên đặt phép nhân nh SGK . Lần lợt thực hiện phép toán .
Hỏi -12x2+10x-2 là kết quả của phép nhân nào ?
6x3-5x2+x là kết quả của phép nhân nào ?
Giáo viên lu ý đặt đa thức nọ dới đa thức kia , sao cho các đơn đồng dạng theo cùng một cột .
Vậy nhân đa thức với đa thức có thể thực hiện theo các cách nào .
Hoạt động 2: (nhóm ?2 )
Các nhóm chẵn làm phép nhân theo cột câu a , các nhóm lẻ thực hiện nhân dòng câu b.
Hoạt động3:(nhóm ?3.)
Giáo viên lu ý với x=2,5 ta viết x=5/2thì bài toán đơn giản hơn 
Đa thức thứ nhất có hai hạn tử và thứ hai có ba hạn tử .
HS tiếp tục thực hiện nhân
Và cộng các kết quả .
Muốn nhân một đa thức với một đa thức , ta nhân mỗi hạn tử của đa thức này với từng hạn tử của đa thức kia rồi cộng các tích với nhau .
Kết quả của phép nhân -2 với đa thức 6x2-5x+1.
Kết quả của phép nhân x với đa thức 6x2-5x+1.
Ta có thể nhân theo hàng ngang hay cột dọc.
Các nhóm thực hiện.
Trình giáo viên nhận xét 
Học sinh thực hiện .Kết quả : 4x2-y2
Kết quả =24m2
Quy tắc :
Ví dụ : SGK .
Quy tắc : SGK.
2) áp dụng:
Hoạt động 4: Giải bài tập tại lớp : Gọi học sinh lên bảng giải bài 7a và 7b ;8a ,8b.
7a)x3-3x2+3x-1. 7b) -x4+7x3-11x2+6x-5. 8a) x3y2-1/2 x2y+2xy-2x2y3+xy2-4y2; 8b) x3+y3.
Hoạt động 5: Xem bài đã giải ; làm bài tập 9;10;11;12 . Học sinh giỏi làm bài 14;15. Đối với bài 9 cần rút gọn biểu thức trớc khi thay số , bài 12 cũng vậy.
D/Rút kinh nghiệm :
I/ mục tiêu:
 - Củng cố kiến thức về các quy tắc nhân đơn thức với đa thức, nhân đa thức với đa thức.
 - Rèn học sinh kỹ năng nhân đơn thức, đa thức với đa thức
 -Giáo dục hs tính cẩn thận , chính xác.
II/ các bớc tiến hành:
 1/ Kiểm tra bài cũ:
 - Phát biểu quy tắc nhân đa thức với đa thức. (4đ)
 - Làm tính nhân: (x3-2x2+x-1)(5-x) (4đ)
 - Từ kết quả trên hãy suy ra kết quả phép nhân sau: (x3-2x2+x-1)(x-5) (2đ)
 Giải: (x3-2x2+x-1)(5-x) = -x4+7x3-11x2+6x-5
 (x3-2x2+x-1)(x-5) = -(x3-2x2+x-1)(5-x)
 = -(-x4+7x3-11x2+6x-5)
 = x4-7x3+11x2-6x+5 
 2/ Bài mới:
 Hoạt động của thầy và trò :
 Ghi bảng
- Học sinh phát biểu quy tắc nhân đơn thức với đa thức, nhân đa thức với đa thức.
- Học sinh làm bài tập 10 (sgk)
- Hai hs lên bảng trình bày, các hs khác giải và kiểm tra lẩn nhau.
-Học sinh lên bảng làm bài 11 sgk. 
+ 2a,2a+2,2a+4 với aN
+ (2a+2)(2a+4)
+ 2a(2a+2)
+ (2a+2)(2a+4)-2a(2a+2)=192
- Học sinh hoạt động nhóm bài 14 sgk. 
+ Gợi ý học sinh gọi 3 số chẵn liên tiếp.
+Tìm tích của hai số sau 
+Tìm tích của hai số đầu.
+Dựa vào đề bài ta có đẵng thức nào ?
Bài 14: Gọi ba số chẳn liên tiếp là 2a, 2a+2 ,2a+4 với aN . Tacó :
(2a+2)(2a+4)-2a(2a+2) = 192
 a+1 = 24
 a = 23.
-Vậy ba số đó là 46, 48, 50.
 Bài 10: Thực hiện phép tính:
 â)(x2-2x+3)(x-5)
= x2.x+(-2x).(x) + 3. x + x2. (-5)+(-2x).(-5)
 +3.(-5)
=x3-6x2+x-15
b). (x2-2xy+y2)(x-y)
= x2..x+(-2xy).x+y2.x+ . x2(-y)+(-2xy)(-y)+y2.(-y)
= x3-3x2y+3xy2-y3
 Bài 11: Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào biến: 
( x-5) ( 2x+ 3)-2x(x-3)+x+7
 = 2x2+3x-10x-15-2x2+6x+x+7 = 8
- Vậy giá trị của biểu thức trên không phụ thuộc vào giá trị của biến x.
 3/ Củng cố:
- Củng cố qua luyện tập .
- Nhắc lại hai quy tắc đã học.
	 4/Dặn dò:
- Làm bài tập 12,13,15sgk.
- Chuẩn bị bài những hằng đẳng thức đáng nhớ cho tiết tới .
- Bài tập hs giỏi :Chứng minh rằng biểu thức sau không phụ thuộc vào giá trị của biến x: 
 C = (2y-x)(x2+2xy + 4y2) + x3 + 5 .
D/ Rút kinh nhgiệm :
27I. Mục tiêu :
Củng cố quy tắc cộng các phân thức đạI số
Củng cố cách trình bày quá trình thức hiện 1 phép tính cộng
II. Chuẩn bị :
III. Hoạt động dạy và học :
Hoạt động dạy
Hoạt động học
1. Hoạt động 1 : Kiểm tra
? Nêu các bước cộng các phân thức không cùng mẫu
áp dụng tính : 3/ ( x2 - 2 ) + 5 / ( x - 2 ) + 
2 / ( x + 2 )
2. Hoạt động 2 : 
Dạng 1 : Cộng các phân thức cùng mẵu :
Cho các nhóm thực hiện bàI 21c trong bảng phụ
Yêu cầu nêu kết quả của từng nhóm
GV hướng dẫn k/tra kết quả
? kết quả đã rút gọn chưa ? 
BàI 22a,b
Nhận xét gì về bàI tập 22a
Gv : PhảI đổi dẵu để có mẵu chung
3. Hoạt động 3 :
Dạng 2 : Không cùng mẫu- Mẫu là đơn thức
Cho hs xét bàI 25 a
? Nhận xét gì về các mẫu của bàI tập này ? 
Tương tự cho hs quy đồng rồi cộng 
GV hướng dẫn kiểm tra kết quả của các nhóm
4. Hoạt động 4 : 
Dạng 3 : Quy đồng rồi cộng
BàI 23a , 23c
Hãy phân tích các mẫu thành nhân tử
Vậy mẫu chung là? 
Quy đồng rồi cộng- Kết quả ?
5. Hoạt động 5 : Củng cố - Dặn dò
? Hãy nhắc lạI các dạng đã luyện tập
GV lưu ý dạng đa thức cộng với phân thức
Xem kỹ lạI từng dạng
GiảI những bàI tập còn lạI
HS theo dõi và làm nháp theo yêu cầu của GV 
HS nhận xét bàI làm của bạn
Dạng 1 : Cộng các phân thức có cùng mẵu thức : 
BàI 21c
Các nhóm nêu kết quả
GV hướng dẫn kiểm tra
BàI 22a,b
( Có cần đổi dấu để có mẵu chung ? )
Dạng 2 : Không cùng mẫu- Mẫu là đơn thức
Hs thực hiện bàI 25a
Gọi hs nêu mẫu chung của bàI
HS trình bày bàI ở bảng lớp
HS khác nhận xét bổ sung - Nêu cần 
Dạng 3 : Quy đồng rồi cộng
HS thực hiện bàI 23a , 23c
Mẫu chung là ? 
Hs trình bày bàI giảI
Đề chẵn	Đề lẻ
 * Phần trắc nghiệm:
 1) Hãy điền vào chỗ trống “” cho đúng
a, pt 5x - 3 = 0 có tập nghiệm S= .... 
 b,pt 4x +1=5x - 2 có tập no S= ...3..
 c, pt : x2 +1 =(x -2)(x- 3) có tập no S=..1..
d, pt: 4x -1 =5+4x có tập nghiệm S = ặ
 * Phần tự luyện:
Bài 1: Giải các phương trình:
a, x - S= 
b, S= 0 
c, x2 - 6x +5 = 0 S = 1; 5 
Bài 2:
 (Gọi quãng đường AB là x(km) ; x>15
.pt: ĐS: 45km
Bài 3: Giải phương trình:
 (3 - x)4 + (2 - x)4 = (5 - 2x)4
*Phần trắc nghiệm:
1) Hãy điền vào chỗ trống “” cho đúng
a,pt : 3x-2 = 0 có tập nghiệm S= 
b,pt:2x+1 =3x -2 có tập no S= 3
c, pt: x2 -1+(x-1)(x+5) = 0 có tập nghiệm S = 1 ; -3
d, pt: 3x -1 =5+3x có tập no S = ặ
Bài 1: Giải các phương trình:
a, S= 
b, S= 3
c, 2x2 - 3x +1 = 0 S= 1;
Bài 2:
Một người đi xe đạp A B với vận tốc trung bình 16 km/h.Lúc về người đó chỉ đi với vận tốc TB là 14 km/h nên thời gian về nhiều hơn t/g đi 30 phút.Tính quãng đường AB
(Gọi q. đường Ablà x(km);x>16
pt: ĐS: 56km
Bài 3: Giải phương trình:
 (3 - x)4 +(2 - x )4 = (5 - 2x)4
Một người đi ô tô từ A đến B, dự định đi hết 2 giờ 30 phút, nhưng thực tế mỗi giờ ôtô lại đi chậm hơn 10km nên hết nhiều thời gian hơn là 50 phút. Tính quãng đường từ A đến B.
C,Đáp án và bảng chấm: 
 *Phần trắc nghiệm: (2đ)
 - Mỗi ý đúng : 0,5 đ
 * Phần tự luận:
 Bài 1: (4đ)
 a, 1,5 đ
 b, 1,5 đ
 c, 1 đ
 Bài 2: (3đ)
 Chọn ẩn phuơng trình : 1,5 đ
 Giải phương trình :1 đ
 Trả lời : 0,5 đ
 Bài 3 : (1 đ)
 Đặt 3 - x = a
 2- x = b
 5 - 2x = a+b
 a4 + b4 = (a +b )4
 a4 + b4 = a4 +4a3b +6a2b2 +4ab3 +b4
 4a3b + 6a2b2 +4ab3 = 0
 2ab(2a2 + 3ab +2b2) = 0
 ab = 0 (1)
 2a2 + 3ab +2b2 =0 (2)
 Giải (1):
 Nếu a = 0 3 - x = 0 x = 3
 b = 0 2 - x = 0 x = 2
 Giải (2):
 2(3 - x)2 + 3(3 - x)(2 - x) + 2(2 - x)2 = 0
 2(9 - 6x +x2) + 18 - 15x +3x2 +2(4 - 4x +x2) = 0
 7x2 - 35x +44 = 0 pt vô nghiệm
 Vậy phương trình có S = 2 ; 3
Rút kinh nghiệm 

Tài liệu đính kèm:

  • docDAI SO 8. TU TIET 4..doc