Giáo án tự chọn môn Toán Lớp 8 - Tuần 16 - Năm học 2012-2013 - Nguyễn Văn Diễn

Giáo án tự chọn môn Toán Lớp 8 - Tuần 16 - Năm học 2012-2013 - Nguyễn Văn Diễn

I . MỤC TIÊU

 - Nắm được định nghĩa, tính chất, dấu hiệu nhận biết hình thoi

 - Biết áp dụng các định nghĩa và tính chất đó để làm các bài toán chứng minh, tính độ lớn của góc, của đoạn thẳng

 - Biết chứng minh tứ giác là hình thoi

 - có kĩ năng vận dụng các kiến thức vào thực tiễn

II . TIẾN TRÌNH DẠY HỌC

Hoạt động 1: Lý thuyết

 

doc 2 trang Người đăng haiha338 Lượt xem 415Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án tự chọn môn Toán Lớp 8 - Tuần 16 - Năm học 2012-2013 - Nguyễn Văn Diễn", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 30/11/2012
Ngài dạy : 8/12/2012
Tuần 16 (Hình học )
chủ đề : tứ giác Tiết 16: Hình thoi
I . Mục tiêu
	- Nắm được định nghĩa, tính chất, dấu hiệu nhận biết hình thoi
	- Biết áp dụng các định nghĩa và tính chất đó để làm các bài toán chứng minh, tính độ lớn của góc, của đoạn thẳng
	- Biết chứng minh tứ giác là hình thoi
	- có kĩ năng vận dụng các kiến thức vào thực tiễn
II . Tiến trình dạy học
Hoạt động 1 : Lý thuyết
Nêu định nghĩa, tính chất, dấu hiệu nhận biết hình thoi
+) Định nghĩa : Hình thoi là tứ giác có bốn cạnh bằng nhau
+) Tính chất : 
- Hình thoi có tất cả các tính chất của hình bình hành
- Hình thoi có hai đường chéo vuông góc với nhau
- Hai đường chéo là hai đường phân giác các góc của hình thoi
+) Dờu hiệu nhận biết
- Tứ giác có bốn cạnh bằng nhau là hình thoi
- Hình bình hành có hai cạnh kề bằng nhau là hình thoi
- Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi
- Hình bình hành có một đường chéo là phân giác của một góc là hình thoi
Hoạt động 2 : Bài tập
Bài 1: Cho hình thoi ABCD AB = 2cm, Trên cạnh AD và DC lần lượt lấy H và K sao cho 
a) cmr: DH + DK không đổi
b) Xác định vị trí của H, K để HK ngắn nhất, tính độ dài ngắn nhất
GV cho HS lên bảng vẽ hình, ghi GT, KL
Bài 2: Cho ∆ ABC nhọn các đường cao BD, CE. Tia phân giác của góc ABD và ACE cắt nhau tại O, cắt AB, AC lần lượt tại M và N. Tia BN cắt CE tại K. Tia CM cắt BD tại H. Chứng minh rằng
BN ^ CM
Tứ giác MNHK là hình thoi
HS lên bảng vẽ hình ghi GT, KL
B
C
K
D
H
A
1 2
1
2
a) 
=> ∆ ABD đều => 
=> => 
Xét ∆ ABH và ∆ DBK có 
AB = BD ; ; 
=> ∆ ABH = ∆ DBK (g.c.g)
=> AH = DK mà AD = DC
=> HD = KC 
=> DH + DK = AD không đổi 
b) Từ chứng minh trên => BH = BK 
 => ∆ HBK đều
=> HK nhỏ nhất ú BH nhỏ nhất
ú BH ^ ADú H là trung điểm của AD
khi đó K là trung điểm của DC
theo định lí Pitago ta có 
BH2 = AB2 - AH2 = 22 - 12 = 3 
 => 
Vậy giá trị nhỏ nhất của HK là cm
A
B
C
D
E
M
N
O
K
H
a) ∆ ABD và ∆ ACE có chung góc A 
 => 
=> 
∆ BOH và ∆ CDH có hai cạp góc bằng nhau nên cặp góc còn lại cũng bằng nhau => 
b) ∆ BOM = ∆ BOH (g.c.g)
=> OM = OH ; tương tự ON = OK 
=> MNHK là hình bình hành 
mà MH ^ NK 
=> MNHK là hình thoi
Hoạt động 3 : Hướng dẫn về nhà
Ôn lại lý thuyết
Xem lại các dạng bài tập đã làm

Tài liệu đính kèm:

  • docgiao_an_tu_chon_mon_toan_lop_8_tuan_16_nam_hoc_2012_2013_ngu.doc