Giáo án môn Hình học Khối 8 - Tiết 41: Luyện tập (Chuẩn kiến thức kĩ năng)

Giáo án môn Hình học Khối 8 - Tiết 41: Luyện tập (Chuẩn kiến thức kĩ năng)

I. MỤC TIÊU :

1. Kiến thức : Giúp học sinh củng cố vững chắc, vận dụng thành thạo định lí về tính chất đường phân giác của tam giác (thuận) để giải quyết những bài toán cụ thể từ đơn giản đến hơi khó.

2. Kỹ năng : Rèn kĩ năng phân tích, chứng minh, tính toán, biến đổi tỉ lệ thức.

3. Tư duy : Rèn luyện tư duy logíc, thao tác phân tích đi lên trong việc tìm kiếm lời giải của một bài toán chứng minh. Qua các bài tập, giáo dục cho học sinh tư duy biện chứng.

II. PHƯƠNG TIỆN DẠY HỌC:

GV: Bảng phụ vẽ hình 26, 27, thước, compa, bài tập áp dụng.

HS: Bảng nhóm, thước, compa

III. TIẾN TRÌNH DẠY HỌC :

doc 3 trang Người đăng haiha338 Lượt xem 238Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án môn Hình học Khối 8 - Tiết 41: Luyện tập (Chuẩn kiến thức kĩ năng)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tuần:	 Tiết: Ngày soạn :......./......../......... Ngày dạy :......../........./.........
Tiết 41 . LUYỆN TẬP
I. MỤC TIÊU :
1. Kiến thức : Giúp học sinh củng cố vững chắc, vận dụng thành thạo định lí về tính chất đường phân giác của tam giác (thuận) để giải quyết những bài toán cụ thể từ đơn giản đến hơi khó.
2. Kỹ năng : Rèn kĩ năng phân tích, chứng minh, tính toán, biến đổi tỉ lệ thức.
3. Tư duy : Rèn luyện tư duy logíc, thao tác phân tích đi lên trong việc tìm kiếm lời giải của một bài toán chứng minh. Qua các bài tập, giáo dục cho học sinh tư duy biện chứng.
II. PHƯƠNG TIỆN DẠY HỌC: 
GV: Bảng phụ vẽ hình 26, 27, thước, compa, bài tập áp dụng.
HS: Bảng nhóm, thước, compa
III. TIẾN TRÌNH DẠY HỌC :
Hoạt động của thầy
Hoạt động của trò
Ghi bảng
Hoạt động 1: Kiểm tra bài cũ
- Phát biểu định lí về đường phân giác của tam giác?
Áp dụng: GV treo Bt trong bảng phụ
GT? KL?
AD là gì của tam giác ABC? => tỉ lệ thức nào ?
Ta có thể áp dụng tính chất nào để tìm DC?
Hoạt động 2: Luyện tập
Bài 18.
GV cho 1 Hs đọc đề bài SGK
GV đưa đề bài lên bảng phụ
GV: AE là gì của tam giác ABC? Ta rút ra được tỉ lệ thức nào ?
Ta có thể áp dụng tỉ lệ thức nào để tìm EB và EC ?
GV gọi 1HS lên bảng làm bài .
Bài 19: GT? KL?
Muốn chứng minh được ta dựa vào kiến thức nào? Thông qua tỉ số nào ?
Vậy ta phải áp dụng định lí talét cho các tam giác nào ?
1 HS thực lên thực hiện, số còn lại làm trong nháp.
Cho HS nhận xét, bổ sung và hoàn chỉnh.
Tương tự ta cũng suy ra hai tỉ lệ thức còn lại. (coi như bài tập về nhà)
Bài 20/sgk
GV gọi 1HS đọc to đề bài 
GV đưa đề bài lên bảng phụ ( hình vẽ, GT, KL) 
GV : Muốn chứng minh OE = OF ta phải chứng minh được tỉ lệ thức nào?
Muốn có được ta phải chỉ ra được các tỉ lệ nào?
Áp dụng tính chất hay định lí nào?
Mặt khác 
GV : Để có điều này ta phải làm ntn?
GV cho HS tự trình bày lại bài tập và trình bày nhanh phần chứng minh. 
Bài 21
GT? KL?
AM là gì củaABC => KL gì về 
SABM và SACM 
Để tìm được SADM ta phải tìm được các diện tích nào ?
SABM=? Còn SABD tính như thế nào ?
AD là phân giác nên hai đường cao của tam giác ABD và ACD như thế nào với nhau?
=> SABD : SACD =?
SABC = S?+S? (dựa vào AD)
SABD =? (nếu đường cao có độ dài là h)
=> ?
=> SABD=?
Bây giờ ta phải xem SABM và SABD có diện tích lớn hơn, dựa vào yếu tố nào ?
=> SADM = ?
Câu b các em về nhà thay số rồi tính xem SAMD =? % SABC
HS phát biểu tại chỗ.
HS nêu tại chỗ.
Phân giác => 
Tính chất của tỉ lệ thức
HS đọc dề bài 
HS : AE là phân giác =>
HS : Tính chất của tỉ lệ thức.
- Một HS lên bảng làm bài. Các HS khác làm bài vào vở.
GT: Hình thang ABCD, a//DC 
Cắt AD tại E, BC tại F
KL: 
Định lí talét thông qua NB / ND
Áp dụng định lí talét cho tam giác ABD và tam giác BDC
HS thực hiện, số còn lại làm tại chỗ trong nháp.
GT: Hình thang ABCD, AB//CD
ACBD= O, a qua O, a//AB cắt AD tại E, cắt BC tại F
KL: OE = OF
 * 
Áp dụng định lí talét
Do AB // CD nên theo hệ quả của định lý Talét :
HS tự chứng minh và trình bày nhanh.
GT: ABC , MB=MC, AD là phân giác, AB=m, AC=n; n > m
SABC = S
KL: a. Tính SAMD
b. n=7cm, m=3cm, SAMD=?%SABC
*AM là trung tuyến
=> SABM = SACM
SAMB và SAMD
SAMB= ½ SABC
Hai đường cao bằng nhau
SABD : SACD = m : n
SABC = SABD + SACD 
SABD = ½ h.m
SABD = . S
Vì n > m => BD < DC nên D nằm giữa B và M
SADM = SABM - SABD
1. Bài cũ.
 A
 3cm 5cm 
 B D C
GT AD là phân giác BAC
 AB = 3cm, AC=5cm
 BD = 2cm
KL DC = ? , BC = ?
Chứng minh
Vì AD là tia phân giác góc nên ta có : 
(cm)
BC = BD + DC = 2 +=(cm)
2. Luyện tập 
Bài 18/SGK
Vì AE là phân giác của BAC
 (theo T/c tỉ lệ thức )
Vậy BE= 21/8 cm; EC= 35/8 cm
Bài 19 Sgk/68
 A B
 E F
 N
 D C
Chứng minh
Gọi N = EFBD
Vì EN // AB theo định talét:
=> (1)
Vì NF // DC theo định lí talét:
=> (2)
Từ (1) và (2) 
Tương tự áp dụng định lí talét ta có: 
Bài 20 Sgk/68
 A B
 E F a
 O 
 D C
Vì EF // BC //AB theo định lí talét ta có:
 (1)
Mặt khác AB//CD nên :
Hay (2)
Từ (1) và (2) => 
=> OE = OF (đpcm)
Bài 21 Sgk/68
 A 
 m n
 h h 
 B D M C
a. Vì AM là trung tuyến ABC 
=> SABM = SACM
Vì AD là phân giác của BAC
Nên hai đường cao từ D đến AB và AC bằng nhau và bằng h.
=> SABD : SACD = m : n
SABC = SABD + SACD = ½ h.(n+m)
SABD = ½ h.m
=> ( SABC = S)
=> SABD = . S
Vì n > m => BD < DC nên D nằm giữa B và M
=> SADM = SABM - SABD
 = ½ S - . S
= S( ½ - ) = S ()
Hoạt động 2: Dặn dò
- Về xem kĩ lí thuyết và các dạng bài tập đã làm, xem lại kiến thức về tỉ lệ thức, chuẩn bị trước bài 4 tiết sau học: “ Khi nào thì hai tam giác được gọi là đồng dạng”

Tài liệu đính kèm:

  • docgiao_an_mon_hinh_hoc_khoi_8_tiet_41_luyen_tap_chuan_kien_thu.doc