Giáo án môn Đại số khối 8 - Tiết 60 đến tiết 72

Giáo án môn Đại số khối 8 - Tiết 60 đến tiết 72

 I/- Mục tiêu :

• Hs nhận biết được vế trái, vế phải và biết chiều của bất đẳng thức ( >; <; ="" ;="" ="">

• Biết tính chất liên hệ giữa thứ tự và phép cộng

• Biết chứng minh bất đẳng thức nhờ so sánh giá trị các vế ở bất đẳng thức hoặc vận dụng tính chất liên hệ giữa thứ tự và phép cộng.

 II/- Chuẩn bị :

 * Giáo viên :. - Bảng phụ ghi bài tập, hình vẽ minh hoạ. Thước kẽ có chia khoảng, phấn màu .

 * Học sinh : - Ôn tập “Thứ tự trong Z” (Toán 6 t.1) và “So sánh hai số hữu tỉ” (Toán 7 tập 1). Thước kẻ, bảng con.

 III/- Tiến trình :

 * Phương pháp : Vấn đáp để phát hiện và giải quyết vấn đề, kết hợp với thực hành theo hoạt động cá nhân hoặc nhóm .

 

doc 65 trang Người đăng nhung.hl Lượt xem 990Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án môn Đại số khối 8 - Tiết 60 đến tiết 72", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 t225 
 Gv: Võ thị Thiên Hương Ngày soạn : . . . . . . . . 
 Tiết : 6 0 Ngày dạy : . . . . . . . . 
 I/- Mục tiêu : 
Hs nhận biết được vế trái, vế phải và biết chiều của bất đẳng thức ( >; <; £ ; ³ )
Biết tính chất liên hệ giữa thứ tự và phép cộng 
Biết chứng minh bất đẳng thức nhờ so sánh giá trị các vế ở bất đẳng thức hoặc vận dụng tính chất liên hệ giữa thứ tự và phép cộng. 
 II/- Chuẩn bị : 
 * Giáo viên :. - Bảng phụ ghi bài tập, hình vẽ minh hoạ. Thước kẽ có chia khoảng, phấn màu .
 * Học sinh : - Ôn tập “Thứ tự trong Z” (Toán 6 t.1) và “So sánh hai số hữu tỉ” (Toán 7 tập 1). Thước kẻ, bảng con. 	 	
 III/- Tiến trình : 
 * Phương pháp : Vấn đáp để phát hiện và giải quyết vấn đề, kết hợp với thực hành theo hoạt động cá nhân hoặc nhóm .
HOẠT ĐỘNG CỦA THẦY
HOẠT ĐỘNG CỦA TRÒ
NỘI DUNG
BỔ SUNG
 HĐ 1 : Giới thiệu chương (3 phút)
- Ở chương II chúng ta đã được học về pt biểu thị quan hệ bằng nhau giữa hai biểu thức. Ngoài quan hệ bằng nhau, hai biểu thức còn có quan hệ không bằng nhau được biểu thị qua bất đẳng thức, bất phương trình. 
 Qua chương IV các em sẽ được biết về bất đẳng thức, bất pt, cách chứng minh một số bất đẳng thức đơn giản, cuối chương là pt chứa dấu gía trị tuyệt đối. Bài đầu ta học: Liên hệ giữa thứ tự và phép cộng. 
- Hs nghe gv trình by
 . . . . . . 
 . . . . . . 
 . . . . . . 
 . . . . . . 
 . . . . . . 
 . . . . . . 
 . . . . . . 
 . . . . . . 
 HĐ 2 : Nhắc lại về thứ tự trên tập hợp số (10 phút) 
- Trên tập hợp số thực, khi so sánh hai số a và b, xảy ra các trường hợp nào ? 
- Và khi biểu diễn các số trên trục số nằm ngang, điểm biểu diễn số nhỏ hơn ở bên trái điểm biểu diễn số lớn hơn. 
- Yêu cầu hs quan sát trục số trong trang 35 SGK rồi trả lời: Trong các số được biểu diễn trên trục số đó, số nào là hữu tỉ ? Số nào là vô tỉ ? So sánh và 3 ? 
- Yêu cầu hs làm ?1 
Điền dấu thích hợp (=,) vào ô vuông (gv đưa đề bài trên bảng phụ ) 
- Với x là một số thực bất kỳ, hãy so sánh x2 và số 0. 
- Vậy x2 luôn lớn hơn hoặc bằng 0 với mọi x, ta viết x2³ 0 với mọi x. 
- Tổng quát, nếu c là một số không âm ta viết thế nào ? 
 - Nếu a không nhỏ hơn b, ta viết thế 
 nào? 
- Tương tự, với x là một số thực bất kì, hãy so sánh -x2 và số 0. Viết kí hiệu ? 
- Nếu a không lớn hơn b, ta viết thế nào? Nếu y không lớn hơn 5, ta viết thế nào ? 
- Khi so sánh hai số a và b, xảy ra các trường hợp: a lớn hơn b hoặc a nhỏ hơn b hoặc a bằng b. 
- Trong các số được biểu diễn trên trục số, số hửu tỉ là -2; -1,3; 0; 3. Số vô tỉ là .
- < 3 
 vì mà 
hoặc điểm nằm bên trái điểm 3 trên trục số. 
- Hs làm ?1 vào vở. Một hs lên bảng 
a) 1,53 < 1,8 
b) –2,37 > -2,41 
c) = 
d) < 
- Nếu x là số dương thì x2 > 0. 
 Nếu x là số âm thì x2 > 0. nếu x = 0 thì x2 = 0. 
- Một hs lên bảng viết c ³ 0. 
- Nếu a không nhỏ hơn b thì a phải lớn hơn b hoặc a = b, ta viết a ³ b. 
- x là một số thực bất kỳ thì –x2 luôn nhỏ hơn hoặc bằng 0. Kí hiệu –x2 £ 0 
- Một hs lên bảng viết. 
 a £ b ; y £ 5 
1. Nhắc lại về thứ tự trên tập hợp số 
Trên tập hợp số thực, khi so sánh hai số a và b
 Nếu a lớn hơn b kí hiệu a > b 
 Nếu a nhỏ hơn b kí hiệu a < b
 Nếu a bằng b kí hiệu a = b 
 Và khi biểu diễn các số trên trục số nằm ngang, điểm biểu diễn số nhỏ hơn ở bên trái điểm biểu diễn số lớn hơn. 
 VD: 1,53 < 1,8 
 –2,37 > -2,41 
 = 
 t226
 t227
 HĐ 3 : Bất đẳng thức (5 phút) 
- Gv giới thiệu về bất đẳng thức 
- Hãy lấy VD về bất đẳng thức và chỉ ra vế trái, vế phải của bất đẳng thức đó. 
- Hs nghe gv trình bày. 
- Hs lấy VD về bất đẳng thức rồi chỉ ra vế trái, vế phải của mỗi bất đẳng thức. 
2. Bất đẳng thức : 
Ta gọi hệ thức dạng a b, a £ b, a ³ b) là bất đẳng thức, với a là vế trái, b là vế phải của bất đẳng thức.
 VD: -2 a 
 a + 2 ³ b – 1 ; 3x – 7 £ 2x + 5
 HĐ 4 : Liên hệ giữa thứ tự và phép cộng (15 phút) 
- Cho biết bất đẳng thức biểu diễn mối quan hệ giữa (-4) và 2. 
- Khi cộng 3 và cả hai vế của bất đẳng thức đó ta được bất đẳng thức nào ? 
- Gv đưa hình vẽ trang 36 SGK lên bảng phụ.
- Hình vẽ này minh hoạ cho kết quả: 
 Khi cộng 3 vào cả hai vế của bất đẳng thức –4 < 2 ta được bất đẳng thức –1< 5 cùng chiều với bất đẳng thức đã cho (gv giới thiệu về hai bất đẳng thức cùng chiều ). 
- Yêu cầu hs làm ?2 
- Vậy liên hệ giữa thứ tự và phép cộng có tính chất sau: (đưa lên bảng phụ )
Tính chất: Với ba số a, b v c, ta cĩ: 
 Nếu a < b thì a + c < b + c.
 Nếu a £ b thì a + c £ b + c 
 Nếu a > b thì a + c > b + c 
 Nếu a ³ b thì a + c ³ b + c 
- Hãy phát biểu thành lời tính chất trên. 
- Gv yêu cầu hs xem VD2 rồi làm ?3 và ?4 .
- Gv giới thiệu tính chất của thứ tự cũng chính là tính chất của bất đẳng thức. 
- Hs trả lời tại chỗ
- - 4 < 2. 
- - 4 + 3 < 2 + 3 
 hay – 1 < 5 
 a) Khi cộng – 3 vào cả hai vế của bất đẳng thức – 4 < 2 thì được bất đẳng thức: - 4 – 3 < 2 – 3 hay – 7 < -1 . 
cùng chiều với bất đẳng thức đã cho. 
b) Khi cộng số c vào cả hai vế của bất đẳng thức – 4 < 2 thì được bất đẳng thức – 4+c < 2+c. 
- Hs thực hiện yêu cầu của gv
- Hs cả lớp làm ?3 và ?4. Hai hs lên bảng trình bày. 
- Hs lớp nhận xét, gv sửa bài và cho hs ghi VD .
3. Liên hệ giữa thứ tự và phép cộng : 
* Tính chất : 
Khi cộng cùng một số vào cả hai vế của một bất đẳng thức ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
 VD: Ta có –2004 > -2005. 
Þ -2004 + (-777) > -2005 + (-777) theo tính chất liên hệ giữa thứ tự và phép cộng. 
 Ta có < 3 (vì 3 =)
Þ + 2 < 3 +2 hay +2 < 5. 
 t228
. . 
 HĐ 5 : Củng cố (10 phút) 
- Bài tập 1a, b trang 37 SGK. 
 (gv đưa trên bảng phụ) 
- Bài tập 2 trang 37 SGK. 
Cho a < b, hãy so sánh a +1 và b+ 1 
- Bài tập 3a trang 37 SGK. 
 So sánh a và b nếu a –5 ³ b- 5 
- Bài tập 4 trang 37 SGK. 
- Yêu cầu một hs đọc đề bài và trả lời. 
- Gv lưu ý cho hs là việc thực hiện quy định vềvận tốc trên các đoạn đường là chấp hành luật giao thông, nhằm bảo đảm an toàn giao thông. 
- Hs trả lời miệng. 
- Một hs thực hiện yêu cầu của gv. 
 - trả lời : a £ 20 
- Bài tập 1a, b trang 37 SGK. 
a) –2+3 ³ 2. sai 
 vì – 2 + 3 = 1 mà 1 < 2 
b) – 6 £ 2(-3) đúng 
 vì 2.(-3) = - 6 
Þ - 6 £ - 6 là đúng. 
- Bài tập 2 trang 37 SGK 
 Có a < b, cộng 1 vào hai vế bất đẳng thức ta được a +1 < b +1 
- Bài tập 3a trang 37 SGK. 
 Có a - 5 ³ b- 5, cộng 5 vào hai vế bất đẳng thức ta được: 
 a - 5 + 5 ³ b – 5 + 5 hay a ³ b 
. . 
 IV/- Hướng dẫn về nhà : (2 phút) 
 - Nắm vững tính chất liên hệ gữa thứ tự và phép cộng (dưới dạng công thức và phát biểu thành lời). 
	 - Bài tập về nhà số 1c, d, 3b trang 37 SGK số 1, 2, 4, 7, 8 trang 41, 42 SBT.
V/- Rút kinh nghiệm :
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 t229 
 Gv : Võ Thị Thiên Hương Ngày soạn : . . . . . . . . 
 Tiết : 6 1 Ngày dạy : . . . . . . . . 
 I/- Mục tiêu : 
Hs nắm được tính chất liên hệ giữa thứ tự và phép nhân (với số dương và số m) ở dạng bất đẳng thức, tính chất bắc cầu của thứ tự. 
Hs biết cách sử dụng tính chất liên hệ giữa thứ tự và phép nhân, tính chất bắc cầu để chứng minh bất đẳng thức hoặc so sánh các số. 
 II/- Chuẩn bị : 
 * Giáo viên: - Bảng phụ ghi bài tập, hình vẽ minh hoạ, tính chất. Thước thẳng có chia khoảng, phấn màu.
 * Học sinh : - Ôn tập “ Thứ tự trong Z” (Toán 6 tập1) và “So sánh hai số hữu tỉ” (Toán 7 tập 1). Thước kẻ, bảng con. 	 	
 III/- Tiến trình : 
 * Phương pháp : Vấn đáp để phát hiện và giải quyết vấn đề, kết hợp với thực hành theo hoạt động cá nhân hoặc nhóm .
HOẠT ĐỘNG CỦA THẦY
HOẠT ĐỘNG CỦA TRÒ
NỘI DUNG
BỔ SUNG
 HĐ 1 : Kiểm tra bài cũ (5 phút)
- Gv nêu yêu cầu kiểm tra 
1. Phát biểu tính chất liên hệ giữa thứ tự và phép cộng. 
2. Bài tập số 3 trang 41 SBT. 
 Đặt dấu “, ³ , £ ” vào ô vuông cho thích hợp. 
- Gv lưu ý câu c còn có thể viết:
 (- 4)2 + 7 16 + 7 
- Gv nhận xét, cho điểm. 
- Một hs lên bảng kiểm tra
1. ( SGK) 
2. a) 12 + (-8) 9 + > (- 8) 
 b) 13 – 19 < 15 – 19 
 c) (-4)2 + 7 16 + 7 
 d) 452 + 12 > 450 + 12 
- Hs lớp nhận xét bàl làm của bạn. 
 HĐ 2 : Liên hệ giữa thứ tự và phép nhân với số dương (10 phút)
- Cho hai số - 2 và 3, hãy viết bất đẳng thức biểu diễn mối quan hệ giữa (- 2) và 3 ?
- Khi nhân cả hai vế của bất đt đó với 2 ta được bất đt nào ? 
- Nhận xét về chiều của hai bất đt. 
- Gv đưa hình vẽ hai trục số trang 37 SGK để minh hoạ cho nhận xét trên. 
- Gv yêu cầu hs thực hiện ?1 
- Liên hệ giữa thứ tự và phép nhân với số dương ta có tính chất sau: 
 ( đưa trên bảng phụ) 
-Hãy phát biểu thành lời tính chất trên 
- Gv yêu cầu hs làm ?2
Đặt dấu thích hợp () vào ô vuông. 
- - 2 < 3 
- - 2.2 < 3.2 
 hay – 4 < 6 
- Hai bất đẳng thức cùng chiều. 
- Hs làm ?1 
a) Nhân cả hai vế của bất đt –2 < 3 với 5091 được bất đt – 10182 < 15273 
b) Nhân cả hai vế của bất đt –2 < 3 với số c dương được bất đt – 2c < 3c 
- Hs làm ?2
a) (- 15,2).3,5 < (-15,08).3,5
b) 4,15.2,2 > (-5,3).2,2 
1. Liên hệ giữa thứ tự và phép nhân với số dương : 
* Tính chất: 
Khi nhân cả hai vế của bất đẳng thức với cùng một số dương ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho. 
 Với ba số a, b và c mà c > 0 
 Nếu a < b thì ac < bc. 
 Nếu a £ b thì ac £ bc. 
 Nếu a > b thì ac > bc. 
 Nếu a ³ b thì ac ³ bc.
 t230
 HĐ 3 : Liên hệ giữa thứ tự và phép nhân với số âm (15 phút) 
- Có bất đẳng thức –2< 3. Khi nhân cả hai vế của bất đt đó với (-2), ta được bất đt nào ? 
- Gv đưa hình vẽ hai trục số trang 38 SGK để minh hoạ cho nhận xét trên. 
Từ ban đầu vế trái nhỏ hơn vế phải, khi nhân cả hai vế với (-2) vế trái lại lớn hơn vế phải. Bất đẳng thức đã đổi chiều. 
- Yêu cầu hs làm ?3
- Gv đưa ra bài tập: 
Hãy điền dấu “, £, ³” vào ô vuông cho thích hợp. 
- Yêu cầu hs phát biểu thành lời tính chất 
- Gv cho vài hs nhắc lại và nhấn mạnh: Khi nhân hai vế của bất đt với số m phải đổi chiều bất đt. 
- Yêu cầu hs làm ?4 vả ?5 
Gv lưu ý hs: Nhân hai vế của bất đt với cũng là chia hai vế cho –4. 
- Gv cho hs làm bài tập: 
Cho m < n, hãy so sánh
 a) 5m và 5n b) 
 c) –3m và –3n. d) 
- Từ –2 3.(-2) vì 4 >- 6 
?3.a) Nhân cả hai vế của bất đt –2 -1035. 
b) Nhân cả hai vế của bất đt –2 3c. 
- Hai hs lần lượt lên bảng điền. 
 Với ba số a, b và c mà c < 0. 
 Nếu a < b thì ac bc
 Nếu a £ b thì ac bc
 Nếu a > b thì ac bc
 Nếu a ³ b thì ac bc
- Hs lớp nhận xét 
- Hs phát biểu tính chất trên. 
 ?4 Cho –4a > -4b 
nhân hai vế với ta có a < b 
 ?5 Khi chia hai vế của bất đt cho cùng một số khác 0, ta phải xét 2 trường hợp: 
- Nếu chia hai vế cho cùng số dương thì bất đt không đổi chiều. 
- Nếu chia hai vế của bất đt cho cùng một số m thì bất đt phải đổi chiều. ...  hs lên bảng rút gọn biểu thức 
- Gv yêu cầu hs lớp nhận xét bài rút gọn của bạn. 
b) Tính gía trị A tại x biết |x| = 
c) Tìm giá trị của x để A 0
- Yêu cầu hai hs lên làm tiếp câu b và c, mỗi hs làm một câu. 
- Gv nhận xét, sửa bài cho hs
Sau đó gv bổ sung thêm câu hỏi: 
d) Tìm giá trị nguyên của x để A có giá trị nguyên 
- Hs suy nghĩ, trả lời.
- a.b> 0 khi a và b cùng dấu
- Một hs lên bảng làm. 
- Hs lớp nhận xét bài làm của bạn. 
- Hs toàn lớp làm bài, hai hs lên bảng trình bày. 
- Bài tập 86 trang 50 SGK
a) x2 > 0 x ¹ 0 
b) (x – 2)(x – 5) > 0 
 Vậy: (x – 2)(x – 5) > 0 
 x 5. 
- Bài tập 14 trang 132 SGK 
Cho biểu thức 
A =
a) Rút gọn biểu thức 
 = 
 = 
 = 
 = ( đk: x ¹ ± 2)
b) |x| = Þ x = ± (tmđk)
 + Nếu x = thì 
+Nếu x = thì
c) * A < 0 
 2 – x 2 (tmđk) 
 * A > 0 
 2 – x > 0 x < 2. 
Kết hợp đk của x: 
 A > 0 khi x < 2 và x ¹ - 2 
d) A Z khi 1 chia hết cho 2– x 
Þ 2 – x Ỵ Ư(1) 
Þ 2 – x Ỵ 
* 2 – x = 1 Þ x = 1 ( tmđk)
* 2 – x = -1 Þ x = 3 ( tmđk ) 
Vậy khi x = 1 hoặc x = 3 thì A Z 
 t267
 t268
 IV/- Hướng dẫn về nhà : (2 phút) 
 - Ôn tập các kiến thức về bất đẳng thức, bất pt, pt chứa giá trị tuyệt đối. 
	 - Bài tập về nhà số 73,75, 80 trang 48, 49 SBT 
 V/- Rút kinh nghiệm : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 t269
 G v : Võ thị Thiên Hương Ngày soạn : . . . . . . . . 
 Tiết : 71 Ngày dạy : . . . . . . . . 
 I/- Mục tiêu : 
Ôn tập và hệ thống hóa các kiến thức cơ bản về pt và bất pt .
Tiếp tục rèn kỹ năng phân tích đa thức thành nhân tử, giải pt và bất pt .
 II/- Chuẩn bị : 
 * Giáo viên : - Bảng phụ ghi bảng ôn tập pt và bất pt, câu hỏi, bài giải mẫu. 
 * Học sinh : - Làm các câu hỏi ôn tập học kì II và các bài tập gv đã giao về nhà, bảng nhóm. 
. III/- Tiến trình :
 * Phương pháp : Vấn đáp kết hợp với thực hành theo cá nhân hoặc hoạt động nhóm .
HOẠT ĐỘNG CỦA THẦY
HOẠT ĐỘNG CỦA TRÒ
NỘI DUNG
BỔ SUNG
 HĐ 1 : Ôn tập phân tích đa thức thành nhân tử (18 phút ) 
- Bài tập 1 trang 130 SGK. 
Phân tích đa thức thành nhân tử:
a) a2 – b2 – 4a + 4 
b) x2 + 2x – 3 
c) 4x2y2 – (x2 + y2)2
d) 2a3 – 54b3
- Bài tập 6 trang 131 SGK 
- Gv yêu cầu hs nhắc lại cách giải dạng toán này. 
- Gv yêu cầu một hs lên bảng làm. 
- Bốn hs lên bảng làm bài, mỗi hs sửa một câu. 
- Hs lớp nhận xét và sửa bài. 
- Để giải bài toán này ta cần tiến hành chia tử cho mẫu, viết phân thức dưới dạng tổng của một đa thức và một phân thức với tử thức là một hằng số. Từ đó tìm giá trị nguyên của x để M có giá trị nguyên. 
- 1 hs lên bảng làm. 
- Bài tập 1 trang 130 SGK. 
a) a2 – b2 – 4a + 4 
= (a2 – 4a + 4) – b2 
= (a – 2)2 – b2
= (a – 2 – b) (a – 2 + b) 
b) x2 + 2x – 3 
= x2 + 3x – x – 3 
= x(x + 3) – (x + 3) 
= (x + 3) (x – 1) 
c) 4x2y2 – (x2 + y2)2 
= (2xy + x2 + y2) (2xy – x2 – y2)
= –(x – y)2(x + y)2
d) 2a3 – 54b3 
= 2(a3 – 27b3)
= 2(a – 3b)(a2 + 3ab + 9b2)
- Bài tập 6 trang 131 SGK 
Tìm giá trị nguyên của x để phân thức M có giá trị là một số nguyên.
 M
Với x Î Z Þ 5x + 4 Î Z 
 Û 2x – 3 Î Ư (7) 
 Û 2x – 3 Î 
Giải tìm được x Î {-2; 1; 2; 5} 
 t270
 HĐ 2 : Ôn tập về phương trình (25 phút )
 - Bài tập:
Giải pt: 3x2 + 2x –1 = 0.
- Gọi hs nhận diện pt
 - Nêu pp giải đối với dạng pt này ?
- Gọi hs trình bày.
- Gv chốt các bước giải.
- Bài tập 7 trang 131 SGK 
- Gv lưu ý hs: Pt a) đưa được về dạng pt bậc nhất một ẩn số nên có một nghiệm duy nhất. Còn pt b và c không đưa được về dạng pt bậc nhất một ẩn số, pt b ( 0x = 13) vô nghiệm, còn pt c (0x = 0 ) có vô số nghiệm, nghiệm là bất kì số nào. 
- Bài tập 18 trang 131 SGK 
 Giải các pt :
a) |2x – 3| = 4 
b) |3x – 1| - x = 2 
- Bài tập 10 trang 131 SGK 
 (đề bài trên bảng phụ) 
- Yêu cầu hs nhận xét dạng của các pt và các bước giải.
- Pt có dạng bậc hai
- Ap dụng pp nhóm các hạng tử để phân tích vế trái thành nhân tử.
 giải pt tích.
- Gv yêu cầu hs lên bảng làm 
- Hs lớp nhận xét bài làm của bạn. 
- Hs hoạt động theo nhóm. 
Nửa lớp làm câu a. 
Nửa lớp làm câu b. 
- Hs có thể cách giải khác của bài b 
 |3x – 1| - x = 2 
Û |3x – 1| = x + 2 
Û 
- Đại diện hai nhóm trình bày bài giải 
hs lớp nhận xét. 
- Pt chứa ẩn ở mẫu
B.1: Đặt đk cho ẩn ( x -1; x 2)
B.2: Quy đồng và khử mẫu
B.3: Giải pt
- Ba hs lên bảng giải. Hs lớp làm bài vào vở.
- Hs lớp nhận xét bài làm của bạn. 
- Bài tập:
3x2 + 2x – 1 = 0
Û (2x2 + 2x) + (x2 – 1) = 0
Û (x + 1)(3x – 1) = 0
 Vậy S = {; -1}
- Bài tập 7 trang 131 SGK 
Giải các pt :
a) 
 Kết quả x = -2
b)
 Biến đổi được: 0x = 13 
 Vậy pt vô nghiệm 
c)
 Biến đổi được: 0x = 0 
 Vậy pt có nghiệm là bất kì số nào 
- Bài tập 18 trang 131 SGK 
a) |2x – 3| = 4 
* Nếu 2x – 3 
 2x – 3 = 4 
 2x = 7 x = 3,5 (tmđk)
* Nếu 2x – 3
 2x – 3 = - 4 
 2x = - 1 x = - 0,5 (tmđk)
 Vậy S = {- 0,5; 3,5} 
b) |3x – 1| - x = 2 
* Nếu 3x – 1 ³ 0 x ³ 
 3x – 1 – x = 2 
 2x = 3 x = (tmđk)
* Nếu 3x – 1 £ 0 Þ x < 
 1 – 3x – x = 2 
 - 4x = 1 x = (tmđk)
 Vậy 
- Bài tập 10 trang 131 SGK 
 Giải các pt: 
a) 
 Đk: x -1; x 2
 x – 2 – 5x – 5 = -15
 - 4x = -8 x = 2 (loại)
 S = 
b) 
 Đk: x -2 ; x 2
 x2 – 2x – x +2 – x2 – 2x = -5x +2
 - 5x + 2 = - 5x +2
 0x = 0
 S = 
 c) 
Đkxđ:	 x -3 ; x 1	MTC = ( x – 1 ) ( x + 3 )
( 2x + 5 )( x – 1 ) + 2x + 2 = ( 3x – 1 ) (x + 3 )
 2x2 – 2x + 5x – 5 + 2x + 2 = 3x2 + 9x – x – 3 
 2x2 + 5x – 3 = 3x2 + 8x – 3 
3x2 + 8x – 3 - 2x2 - 5x + 3 = 0
x2 + 3x = 0
x ( x + 3 ) = 0
Vậy tập nghiệm của pt là S = 
 t271
 t272
 IV/- Hướng dẫn về nhà : (2 phút) 
 - Tiết sau ôn tập tiếp theo, trọng tâm là giải toán bằng cách lập pt bà bài tập tổng hợp về rút gọn biểu thức. 
	 - Bài tập về nhà số 12, 13, 15 trang 131, 132 SGK và số 6, 8, 10, 11 trang 151 SBT 
 V/- Rút kinh nghiệm : 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 t273
 G v : Võ thị Thiên Hương Ngày soạn : . . . . . . . . 
 Tiết : 7 2 Ngày dạy : . . . . . . . . 
 I/- Mục tiêu : 
Tiếp tục rèn luyện kỹ năng giải toán bằng cách lập pt, bài tập tổng hợp về rút gọn biểu thức. 
Hướng dẫn hs vài bài tập phát triển tư duy . 
Chuẩn bị kiểm tra toán HK II. 
 II/- Chuẩn bị : 
 * Giáo viên : - Bảng phụ ghi đề bài, một số bài giải mẫu. 
 * Học sinh : - Ôn tập các kiến thức và làm bài theo yêu cầu của gv. Bảng con. 
 III/- Tiến trình : 
 * Phương pháp : Vấn đáp kết hợp với thực hành theo cá nhân hoặc hoạt động nhóm .
HOẠT ĐỘNG CỦA THẦY
HOẠT ĐỘNG CỦA TRÒ
NỘI DUNG
BỔ SUNG
 HĐ 1 : Ôn tập về giải bài toán bằng cách lập phương trình (20 phút)
- Gv đưa đề bài trên bảng phụ 
Một số tự nhiên có hai chữ số và chia hết cho 5. Hiệu của số đó và chữ số hàng chục của nó bằng 68. Tìm số đó?
- Gv yêu cầu các nhóm thảo luận 8’ 
- Gv cùng các nhóm nhận xét, sửa sai và chốt bài toán.
- Bài tập 12 và 13 trang 131 SGK 
 - Gv yêu cầu hai hs lên bảng phân tích bài toán, lập pt, giải pt rồi trả lời bài toán. 
- Sau khi hai hs làm bài xong, gv yêu cầu hai hs khác đọc lời giải bài toán. 
- Gv nhắc nhở hs những điều cần chú ý khi giải toán bằng cách lập pt.
- Hs đọc đề 
Các nhóm thảo luận trong 8’
- Hs lớp nhận xét bài làm của bạn.
- Hai hs lên bảng làm bài. 
HS1: Sửa bài 12 trang 131 SGK.
- HS2: Sửa bài 13 trang 131 SGK. 
- Hs lớp nhận xét bài làm của bạn.
- Bài tập:
Gọi x là chữ số hàng chục (0 < x £ 9, xÎ N)
Theo đề bài, chữ số hàng đơn vị là 5. 
Ta có: 
 Þ 10x + 5 – x = 68
 Û 9x = 63
 Û x = 7 (nhận)
 Vậy số cần tìm là 75
v(km/h)
t(h)
s(km)
Lúc
 đi
25
x
Lúc
 về
30
x
- Bài tập 12 trang 131 SGK 
Gọi x (km) là quảng đường AB (x > 0) 
Phương trình: 
Giải pt được x = 50 (tmđk) 
Quảng đường AB dài 50 km
- Bài tập 13 trang 131 SGK
Gọi x là số sp xí nghiệp phải sản xuất theo kế hoạch ( x N* )
Năng suất/ ngày
Số ngày (ngày)
Số SP
(SP)
Dự định
50
x
Thực
hiện
65
x+ 255
Phương trình: 
Giải pt được: x = 1500 (tmđk) 
Số sp xí nghiệp phải sản xuất theo kế hoạch là 1500 sản phẩm. 
 t274
 HĐ 2 : Ôn tập về dạng bài tập rút gọn biểu thức tổng hợp (22 phút) 
- Bài tập 14 trang 132 SGK. 
 (đề bài trên bảng phụ) 
a) Rút gọn biểu thức 
b) Tính giá trị của A tại x biết |x|=
c) Tìm giá trị của x để A < 0 
- Gv yêu cầu hs lớp nhận xét bài rút gọn của bạn. Sau đó yêu cầu hai hs lên làm tiếp câu b và c . 
- Gv nhận xét, sửa bài 
Sau đó gv bổ sung thêm câu hỏi: 
d) Tìm giá trị của x để A > 0 
c) Tìm giá trị nguyên của x để A có giá trị nguyên 
- Bài tập: (gv đưa đề bài trên bảng)
 Cho A =
a) Tìm điều kiện xác định cùa A
 b) Rút gọn A 
c) Với giá trị nào của x thì A = 0
d) Tìm các giá trị của x để A âm
- Gv cho hs lên bảng làm từng phần
- Nhắc lại cách tìm đkxđ ?
- Yêu cầu một hs lên rút gọn biểu thức A
- Cách tìm x để A = 0
- Gv chú ý hs về đk của x.
- Phân thức có giá trị âm khi nào?
- Cho hs tìm các giá trị của x để tử và mẫu trái dấu? Gv chú ý về đk của x
- Một hs lên bảng rút gọn biểu thức 
- Hs lớp nhận xét bài làm của bạn. 
- Hs toàn lớp làm bài, hai hs khác lên bảng trình bày. 
- Mẫu thức khác 0
- Hs lên bảng thực hiện
- Đặt cho A = 0 rồi giải pt với ẩn x.
Hs lên bảng trình bày.
- Khi tử và mẫu trái dấu
- Hs lên bảng trình bày.
- Bài tập 14 trang 132 SGK 
a) A = 
= 
= 
= = ( tmđk: x ¹ ± 2 )
b) |x| = Þ x = ± (tmđk )
+ Nếu x = 
+Nếu x = A= 
c) A < 0 Û 
 Û 2 – x 2 (tmđk )
d) A > 0 Û 
 Û 2 – x > 0 Û x < 2 
Kết hợp đk của x để A > 0 thì x < 2 
 và x ¹ - 2 
c) A có giá trị nguyên khi 1 chia hết cho 2 – x 
Þ 2 – x Î Ư (1) 
Þ 2 – x Î {±1} 
* 2 – x = 1 Þ x = 1 ( tmđk ) 
* 2 – x = -1 Þ x = 3 ( tmđk ) 
Vậy khi x = 1 hoặc x = 3 thì A có giá trị nguyên. 
- Bài tập:
a) A xác định khi 
b)fhfj
 = 
 = 
 = 
c) A = 0 = 0
 x + 1 = 0
 x = - 1 ( không thỏa đkxđ )
 Vậy không có giá trị x để A = 0
d) A < 0 < 0
 hoặc 
 hoặc (vô nghiệm)
 Vậy với – 1 < x < 1 thì A < 0
 . . . . . . 
 . . . . . . 
 . . . . . . 
 . . . . . . 
 . . . . . . 
 . . . . . . 
 t275
 t276
 IV/- Hướng dẫn về nhà : (3 phút) 
 Để chuẩn bị tốt cho kiểm tra Toán học kì II cần ôn lại về Đại số như sau : 
	 - Lí thuyết: các kiến thức cơ bản của hai chương III và IV qua các câu hỏi ôn tập chương, các bảng tổng kết. 
	 - Bài tập: Ôn lại các dạng bài tập giải pt đưa được về dạng ax + b = 0, pt tích, pt chứa ẩn ở mẫu, pt chứa giá trị tuyệt đối
 Giải bất pt, giải toán bằng cách lập pt, chú ý cá bài tập rút gọn biểu thức. 
 V/- Rút kinh nghiệm : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tài liệu đính kèm:

  • docDai so 8 Chuong IV.doc