1/ MỤC TIÊU:
1.1. Kiến thức: Ôn tập kiến thức trong chương cho học sinh
1.2. Kĩ năng : Vận dụng kiến thức làm bài tập
1.3 Thái độ: Giáo dục tính cẩn thận, chính xác trong học tập bộ môn
2/ TRỌNG TÂM: Hệ thống lại các kiến thức về tam giác đồng dạng.
3/ CHUẨN BỊ:
GV: Thước thẳng
HS: Hoàn thành các yêu cầu của tiết trước
4/ TIẾN TRÌNH:
4.1 Ổn định và KDHS: 81
82
4.2 Kiểm tra miệng :Kết hợp ôn tập
4.3 Bài mới
Tiết 53 ÔN TẬP CHƯƠNG 3 Tuần dạy: 1/ MỤC TIÊU: 1.1. Kiến thức: Ôn tập kiến thức trong chương cho học sinh 1.2. Kĩ năng : Vận dụng kiến thức làm bài tập 1.3 Thái độ: Giáo dục tính cẩn thận, chính xác trong học tập bộ môn 2/ TRỌNG TÂM: Hệ thống lại các kiến thức về tam giác đồng dạng. 3/ CHUẨN BỊ: GV: Thước thẳng HS: Hoàn thành các yêu cầu của tiết trước 4/ TIẾN TRÌNH: 4.1 Ổn định và KDHS: 81 82 4.2 Kiểm tra miệng :Kết hợp ôn tập 4.3 Bài mới Hoạt động của giáo viên và học sinh Nội dung Hoạt động 1: GV: đưa lên bảng phụ các câu hỏi ôn tập chương III. HS: trả lời : GV: lần lượt đưa phần tóm tắt của từng nội dung lên bảng phụ để củng cố lại phần lý thuyết Hoạt động 2 GV: đưa lên bảng phụ bài tập 1 ( vở bài tập). HS: đọc to đề. Gọi 1 HS vẽ hình. Gọi 1 HS vẽ hình 1 HS ghi GT-KL. Câu a: GV: đặt câu hỏi dẫn dắt: GV: Chứng minh rEBD rABC theo từng trường hợp nào? HS: Góc –Góc. GV: gọi HS lần lượt chỉ ra các cặp góc bằng nhau. Gọi 1 HS lên bảng trình bày. Câu b: GV: Để tính độ dài BC ta vận dụng định lý nào? HS: Pitago vào tam giác vuông ABC. GV: Để tính AD, BD ta dựa vào giả thuyết nào của bài toán. HS: CD là phân giác r ABC nên theo tính chất về đường phân giác trong tam giác ta có: Rồi sau đó ta vận dụng tính chất của tỉ lệ thức để tính AD hoặc BD. GV: Để tính DE, BE ta dựa vào đâu? HS: Hai tam giác đồng dạng EBD và ABC. GV gọi lần lượt HS lên bảng trình bày tính độ dài các đoạn thẳng. GV đưa bài tập 2 ( Vở bài tập) lên bảng phụ. Gọi 1 HS vẽ hình +GT-KL -GV đặt câu hỏi gợi ý dẫn dắt HS phân tích. -Gọi lần lượt HS lên bảng chứng minh, tính toán. rAHB rBCD theo trường hợp nào? ( Góc –Góc). Hãy chỉ ra các cặp góc bằng nhau ( AHB = C = 900 ABH = BDC ( so le trong) Tỉ số của hai tam giác đồng dạng là? (Tỉ số giữa hai cạnh tương ứng của hai tam giác đồng dạng bằng tỉ số đng dạng). Tỉ số diện tích của hai tam giác đồng dạng bằng gì? (Bằng bình phương tỉ số đồng dạng). Dựa vào kết quả câu c hãy tính diện tích rAHB. I/ Lý thuyết: 1/ Đoạn thẳng tỉ lệ. 2/ Định lý Talét thuận và đảo. 3/ Hệ quả của định lý Talet. 4/ Tính chất đường phân giác trong tam giác. 5/ Tam giác đồng dạng. II/ Bài tập: A D B E C Bài tập 1: GT KL rABC; A = 900 AB = 16 cm. AC = 12 cm. Phân giác CD DE CB a/ r EBD rABC b/ Độ dài BC, AD, BD, BE. a/ Chứng minh : rEBD rABC: Xét rEBD và rABC: DEB = A ( cùng bằng 900) B : chung. Vậy rEBD rABC (g-g) b/ Tính BC: Vì r ABC vuông tại A nên: BC2 = AB2 +AC2 = 162 + 122 = 400 BC = 20 cm. Tính AD, BD: Vì CD là phân giác của rABC. Nên : Hay : 20AD =240-12AD 32AD = 240 BD = AB-AD = 16-7,5 = 8,5 cm. Tính DE, BE: Vì rEBD rABC nên: cm. BE = cm. Bài tập 2: A 12 H B 9 C D GT KL Hình chữ nhật ABCD AB = 12 cm; BC= 9 cm; AHBD a/ rAHB rBCD b/ Tỉ số đồng dạng k của rAHB và r BCD c/ d/ SAHB = ? a/ Chứng minh rAHB rBCD: Xét r AHB và rBCD: AHB = C = 900 ABH = BDC ( so le trong , AB// CD) Vậy rAHB rBCD (g-g) b/ Tính tỉ số đồng dạng k của rAHB và rBCD là: k = c/ d/ ( cmt) SBDC = =54 cm2. Vậy : cm2 4.4 Câu hỏi, bài tập củng cố GV: Qua câu d bài tập 2 ta thấy để tính diện tích của tam giác ta có thể dựa vào đâu? HS: phát biểu như Bài học kinh nghiệm. III/ Bài học kinh nghiệm: Có thể dựa vào tỉ số đồng dạng của hai tam giác để tính diện tích tam giác. 4.5 Hướng dẫn học ở nhà Đối với tiết vừa học -Xem lại lý thuyết đã ôn. -Xem lại các bài tập của chương. Chuẩn bị tiết sau: - Học thuộc các nội dung kiến thức vừa ôn tập - Tiết sau tiếp tục ôn tập 5. RÚT KINH NGHIỆM
Tài liệu đính kèm: