Giáo án Hình học Khối 8 - Tiết 36: Diện tích đa giác - Nguyễn Văn Tú

Giáo án Hình học Khối 8 - Tiết 36: Diện tích đa giác - Nguyễn Văn Tú

I- MỤC TIÊU BÀI GIẢNG:

+ Kiến thức: HS nắm vững công thức tính diện tích các đa giác đơn giản( hình thoi, hình chữ nhật, hình vuông, hình thang).Biết cách chia hợp lý các đa giác cần tìm diện tích thành các đa giác đơn giản có công thức tính diện tích

- Hiểu được để chứng minh định lý về diện tích hình thoi

+ Kỹ năng: Vận dụng công thức và tính chất của diện tích để tính diện tích đa giác, thực hiện các phép vẽ và đo cần thiết để tính diện tích. HS có kỹ năng vẽ, đo hình

+Thái độ: Kiên trì trong suy luận, cẩn thận, chính xác trong hình vẽ.

 - Tư duy nhanh, tìm tòi sáng tạo.

II- PHƯƠNG TIỆN THỰC HIỆN:

- GV: Bảng phụ, dụng cụ vẽ.

- HS: Thứơc com pa, đo độ, ê ke.

III- TIẾN TRÌNH BÀI DẠY

Sĩ số :

 

doc 3 trang Người đăng haiha338 Lượt xem 242Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Hình học Khối 8 - Tiết 36: Diện tích đa giác - Nguyễn Văn Tú", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày sọan:01/01/2009
Ngày giảng:
 Tiết 36
 Diện tích đa giác
I- Mục tiêu bài giảng:
+ Kiến thức: HS nắm vững công thức tính diện tích các đa giác đơn giản( hình thoi, hình chữ nhật, hình vuông, hình thang).Biết cách chia hợp lý các đa giác cần tìm diện tích thành các đa giác đơn giản có công thức tính diện tích 
- Hiểu được để chứng minh định lý về diện tích hình thoi
+ Kỹ năng: Vận dụng công thức và tính chất của diện tích để tính diện tích đa giác, thực hiện các phép vẽ và đo cần thiết để tính diện tích. HS có kỹ năng vẽ, đo hình 
+Thái độ: Kiên trì trong suy luận, cẩn thận, chính xác trong hình vẽ.
 - Tư duy nhanh, tìm tòi sáng tạo.
II- phương tiện thực hiện:
- GV: Bảng phụ, dụng cụ vẽ.
- HS: Thứơc com pa, đo độ, ê ke.
III- Tiến trình bài dạy
Sĩ số :
Hoạt động của giáo viên
Hoạt động của học sinh
I- Kiểm tra:
- GV: đưa ra đề kiểm tra trên bảng phụ.
Cho hình thoi ABCD và hình vuông EFGH và các kích thước như trong hình vẽ sau:
a) Tính diện tích hình thoi và diện tích hình vuông theo a, h
b) So sánh S hình vuông và S hình thoi
c) Qua kết quả trên em có nhận xét gì về tập hợp các hình thoi có cùng chu vi?
d) Hãy tính h theo a khi biết = 600
Giải:
a) SABCD = a.h SEFGH = a2
b) AH < AB hay h < a ah < a2
 Hay SABCD < SEFGH
c) Trong hai hình thoi và hình vuông có cùng chu vi thì hình vuông có S lớn hơn.
- Trong tập hình thoi có cùng chu vi thì hình vuông là hình thoi có S lớn nhất.
d) Khi = 600 thì ABC là đều, AH là đường cao. áp dụng Pi Ta Go ta có: 
h2=AH2 = AB2 - BH2 = a2 - = (1)
Tính h theo a ( Không qua phép tính căn) ta có từ (1) h = 
II- Baì mới
* HĐ1: Giới thiệu bài mới
Ta đã biết cách tính diện tích của các hình như: diện tích diện tích hình chữ nhật, diện tích hình thoi, diện tích thang. Muốn tính diện tích của một đa giác bất kỳ khác với các dạng trên ta làm như thế nào? Bài hôm nay ta sẽ nghiên cứu
* HĐ2: Xây dựng cách tính S đa giác
1) Cách tính diện tích đa giác
- GV: dùng bảng phụ
 Cho ngũ giác ABCDE bằng phương pháp vẽ hình. Hãy chỉ ra các cách khác nhau nhưng cùng tính được diện tích của đa giác ABCDE theo những công thức tính diện tích đã học
C1: Chia ngũ giác thành những tam giác rồi tính tổng:
SABCDE = SABE + SBEC+ SECD
C2: S ABCDE = SAMN - (SEDM + SBCN)
C3:Chia ngũ giác thành tam giác vuông và hình thang rồi tính tổng
- GV: Chốt lại
- Muốn tính diện tích một đa giác bất kỳ ta có thế chia đa giác thành các tanm giác hoặc tạo ra một tam giác nào đó chứa đa giác. Nếu có thể chia đa giác thành các tam giác vuông, hình thang vuông, hình chữ nhật để cho việc tính toán được thuận lợi.
- Sau khi chia đa giác thành các hình có công thức tính diện tích ta đo các cạnh các đường cao của mỗi hình có liên quan đến công thức rồi tính diện tích của mỗi hình.
* HĐ2: áp dụng
2) Ví dụ
- GV đưa ra hình 150 SGK.
- Ta chia hình này như thế nào?
- Thực hiện các phép tính vẽ và đo cần thiết để tính hình ABCDEGHI
- GV chốt lại
Ta phải thực hiện vẽ hình sao cho số hình vẽ tạo ra để tính diện tích là ít nhất
- Bằng phép đo chính xác và tính toán hãy nêu số đo của 6 đoạn thẳng CD, DE, CG, AB, AH, IK từ đó tính diện tích các hình AIH, DEGC, ABGH
- Tính diện tích ABCDEGHI?
III- Củng cố
* Làm bài 37
- GV treo tranh vẽ hình 152.
- HS1 tiến hành các phép đo cần thiết.
- HS2 tính diện tích ABCDE.
* Làm bài 40 ( Hình 155) 
- GV treo tranh vẽ hình 155.
+ Em nào có thể tính được diện tích hồ? 
+ Nếu các cách khác để tính được diện tích hồ?
IV- Hướng dẫn về nhà: 
 Làm bài tập phần còn lại
Ta có công thức tính diện tích của đều cạnh a là: 
 SABC = ah = a. = 
* Với a = 6 cm, = 600
SABC = 9 cm2 = 15,57 cm2
SABCD = 2 SABC = 31,14 cm2
1) Cách tính diện tích đa giác
 A
 E B
 D C
 A
 E B
M D C N 
2) Ví dụ
 A B
C 
D
I
E
 H G
SAIH = 10,5 cm2
SABGH = 21 cm2
SDEGC = 8 cm2
SABCDEGHI = 39,5 cm2
Bài 37
S =1090 cm2
Bài 40 ( Hình 155)
C1: Chia hồ thành 5 hình rồi tính tổng
 S = 33,5 ô vuông
C2: Tính diện tích hình chữ nhật rồi trừ các hình xung quanh
Tính diện tích thực
 Ta có tỷ lệ thì diện tích thực là S1 bằng diện tích trên sơ đồ chia cho 
 S1= S : = S . k2
 S thực là: 33,5 . (10000)2 cm2 = 33,5 ha
1

Tài liệu đính kèm:

  • docgiao_an_dai_so_lop_8_tiet_36_dien_tich_da_giac_nguyen_van_tu.doc