Giáo án Đại số Lớp 8 - Tiết 22 đến 39 - Năm học 2008-2009 - Lương Văn Minh

Giáo án Đại số Lớp 8 - Tiết 22 đến 39 - Năm học 2008-2009 - Lương Văn Minh

Hoạt động 1 : Kiểm tra bài cũ

Kiểm tra vở ghi, vở tập 3 em

Hoạt động 2 : Định nghĩa

Các em quan sát các biểu thức có dạng sau đây :

( GV đưa các biểu thức trang 34 đã chuẩn bị ở bảng phụ lên bảng)

a) c)

b) b)

Câc em thấy các biểu thức này A và B là những biểu thức gì ?

Những biểu thức như thế được gọi là những phân thức đại số

 Vậy em nào có thể định nghĩa được phân thức đại số ?

Chú ý : Mỗi đa thức cũng được coi như một phân thức với mẫu thức bằng 1

Ví dụ :

 a) ; b) 3x2 - 12

 là các phân thức:

a) b)

Các em thực hiện

Em hãy viết một phân thức đại số

Các em thực hiện

Một số thực a bất kì có phải là một phân thức không ? vì sao ?

Số 0, số 1 cũng là những phân thức đại số

Hoạt động 3 :

Hai phân thức bằng nhau

Hai phân số và (b, d 0)

được gọi là bằng nhau khi nào ?

Hai phân thức cũng là hai phân số mà tử số và mẫu số lúc này là các đa thức

Vậy hai phân thức và gọi là bằng nhau khi nào ?

Các em thực hiện

Có thể kết luận hay không ?

Các em thực hiện

Xét xem hai phân thức và có bằng nhau không ?

Các em thực hiện

Bạn Quang nói rằng :

doc 39 trang Người đăng tuvy2007 Lượt xem 412Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Đại số Lớp 8 - Tiết 22 đến 39 - Năm học 2008-2009 - Lương Văn Minh", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn:24/10/2008
Tuần : 11 Tiết : 22 Phân thức Đại số	 
I) Mục tiêu : 
Học sinh hiểu rõ khái niệm phan thức đại số
Học sinh có khái niệm về hai phân thức bằng nhau để nắm vững tính chất cơ bản của phân thức
II) Chuẩn bị của giáo viên và học sinh : 
 GV : Giáo án , bảng phụ ghi các phân thức trong định nghĩa trang 34
 HS : Nghiên cứu trước bài phân thức 
III) Phương phỏp: Vấn đỏp, luyện tập và thực hành, Phỏt hiện và giải quyết vấn đề
IV) Tiến trình dạy học: 
Hoạt động của giáo viên
Hoạt động của học sinh
Phần ghi bảng
?2
?1
?2
?1
Hoạt động 1 : Kiểm tra bài cũ 
Kiểm tra vở ghi, vở tập 3 em
Hoạt động 2 : Định nghĩa
Các em quan sát các biểu thức có dạng sau đây :
( GV đưa các biểu thức trang 34 đã chuẩn bị ở bảng phụ lên bảng)
 c)
b)
Câc em thấy các biểu thức này A và B là những biểu thức gì ?
Những biểu thức như thế được gọi là những phân thức đại số 
 Vậy em nào có thể định nghĩa được phân thức đại số ?
Chú ý : Mỗi đa thức cũng được coi như một phân thức với mẫu thức bằng 1
Ví dụ : 
 a) ; b) 3x2 - 12
 là các phân thức:
a) b) 
Các em thực hiện 
Em hãy viết một phân thức đại số 
Các em thực hiện 
Một số thực a bất kì có phải là một phân thức không ? vì sao ?
Số 0, số 1 cũng là những phân thức đại số 
?5
?5
?4
?4
?3
?3
Hoạt động 3 : 
Hai phân thức bằng nhau
Hai phân số và (b, d 0)
được gọi là bằng nhau khi nào ?
Hai phân thức cũng là hai phân số mà tử số và mẫu số lúc này là các đa thức
Vậy hai phân thức và gọi là bằng nhau khi nào ?
Các em thực hiện 
Có thể kết luận hay không ?
Các em thực hiện 
Xét xem hai phân thức và có bằng nhau không ?
Các em thực hiện 
Bạn Quang nói rằng : 
Còn bạn Vân thì nói : . 
Theo em ai nói đúng ?
Hướng dẫn về nhà :
Học thuôc hai định nghĩa
Ôn lại tính chất cơ bản của phân số
Bài tập về nhà : 
1, 2, 3 trang 36 SGK
HS :
Ta thấy trong các biểu thức này A và B là những đa thức
Định nghĩa :
Một phân thức đại số là một biểu thức có dạng , trong đó A, B là những đa thức và B khác đa thức 0
(HS tự cho một phân thức đại số)
Một số thực a bất kì là một phân thức; vì mỗi một số thực cũng được coi như một đa thức 
Ví dụ :
được coi là phân thức 
Hai phân số và (b, d 0)
được gọi là bằng nhau khi ta có : a.d = b.c
Hai phân thức và gọi là bằng nhau nếu A.D = B.C
Ta có thể kết luận 
Vì 3x2y. 2y2 = 6xy3. x = 6x2y3 
 = vì : 
x(3x + 6 ) = 3(x2 + 2x) =3x2 + 6x
Theo em thì bạn Vân nói đúng :
Vì 
1) Định nghĩa
Một phân thức đại số (hay nói gọn là phân thức) là một biểu thức có dạng , trong đó A, B là những đa thức và B khác đa thức 0
A được gọi là tử thức (hay tử)
B được gọi là mẫu thức (hay mẫu)
2) Hai phân thức bằng nhau
Hai phân thức và gọi là bằng nhau nếu A.D = B.C
Ta viết :
 = nếu A.D = B.C
Ví dụ :
vì (x-1)(x+1) = 1.(x2 - 1)
Ngày soạn: 1/11/2008
Tuần : 12 Tiết : 23	 tính chất cơ bản của phân thức 	 
I) Mục tiêu : 
Học sinh nắm vững tính chất cơ bản của phân thức để làm cơ sở cho việc rút gọn phân thức 
Học sinh hiểu được quy tắc đổi dấu suy ra được từ tính chất cơ bản của phân thức, nắm vững và vận dụng tốt quy tắc này 
II) Chuẩn bị của giáo viên và học sinh : 
 GV : Giáo án , bảng phụ ghi đề ?4, ?5
 HS : Ôn lại tính chất cơ bản của phân số
III) Phương phỏp: Vấn đỏp, luyện tập và thực hành, Phỏt hiện và giải quyết vấn đề
IV) Tiến trình dạy học: 
Hoạt động của giáo viên
Hoạt động của học sinh
Phần ghi bảng
?3
?2
?1
?3
?2
?1
Hoạt động 1 : Kiểm tra bài cũ 
Định nghĩa phân thức đại số ? cho ví dụ ?
Định nghĩa hai phân thức bằng nhau ?
Giải bài tập 1) a, b ?
Các em thực hiện 
Em nào có thể nhắc lại tính chất cơ bản của phân số ?
Các em thực hiện
Cho phân thức . Hãy nhân tử và mẫu của phân thức này với 
x + 2 rồi so sánh phân thức vừa nhận được với phân thức đã cho
Các em thực hiện
Cho phân thức . Hãy chia tử và mẫu của phân thức này cho 3xy rồi so sánh phân thức vừa nhận được với phân thức đã cho
Qua ?1, ?2, ?3 thì phân thức có những tính chất cơ bản nào ?
Một em nhắc lại tính chất cơ bản của phân thức ?
?5
?5
?4
?4
Các em thực hiện
Dùng tính chất cơ bản của phân thức, hãy giải thích vì sao có thể viết : a)
 b) 
Hoạt động 3 : Quy tắc đổi dấu
Theo ?4 b) thì ta có quy tắc đổi dấu như thế nào ? 
Một em nhắc lại quy tắc đổi dấu 
Củng cố : 
Các em thực hiện
Dùng quy tắc đổi dấu hãy điền một đa thức thích hợp vào chỗ trống trong mỗi đẳng thức sau : a) 
b) 
Hướng dẫn về nhà :
Học thuộc tính chất cơ bản của phân thức và quy tắc đổi dấu
Bài tập về nhà : 4, 5, 6 tr 38
Tính chất cơ bản của phân số là :
Nếu ta nhân hay chia cả tử số và mẫu số của một phân số với cùng một số khác 0 thì ta đươc một phân số bằng phân số đã cho
Nhân tử và mẫu của phân thức với x + 2 
Ta được : 
So sánh phân thức vừa nhân được với phân thức ta có :
x( x + 2 ).3 = 3( x + 2 )x
Vậy : = 
Chia tử và mẫu của phân thức cho 3xy Ta đươc : 
So sánh phân thức vừa nhân được với phân thức ta có :
3x2y. 2y2 = 6xy3.x = 6x2y3
Vậy : = 
 a) Ta có thể viết : vì khi ta chia tử thức và mẫu thức của phân thứccho cùng đa thức x - 1 thì ta được phân thức 
b) Ta có thể viết : 
vì khi ta nhân tử thức và mẫu thức của phân thứcvới cùng số (-1) thì ta được phân thức 
HS :
Nếu ta đổi dấu cả tử và mẫu của một phân thức thì được một phân thức mới bằng phân thức đã cho
b) 
1) Tính chất cơ bản của phân thức
 ( SGK tr 37 )
(M là một đa thức khác đa thức 0)
( N là một nhân tử chung )
2) Quy tắc đổi dấu
Nếu đổi dấu cả tử và mẫu của một phân thức thì được một phân thức bằng phân thức đã cho
Tuần : 12 Tiết 24	rút gọn phân thức 	
I) Mục tiêu : 
- Học sinh nắm vững và vận dụng được quy tắc rút gọn phân thức 
- Học sinh bước đầu nhận biết được những trường hợp cần đổi dấu và biết cách đổi dấu để xuất hiện nhân tử chung của tử và mẫu
II) Chuẩn bị của giáo viên và học sinh : 
 GV : Giáo án , bảng phụ ghi đề ?1, ?2
 HS : Học thuộc tính chất cơ bản của phân thức và quy tắc đổi dấu, giải các bài tập cho về nhà
III) Phương phỏp: Vấn đỏp, luyện tập và thực hành
IV) Tiến trình dạy học: 
Hoạt động của giáo viên
Hoạt động của học sinh
Phần ghi bảng
?2
?2
?1
?1
Hoạt động 1 : Kiểm tra bài cũ 
Phát biểu tính chất cơ bản của phân thức ?
Giải bài tập 4 trang 38
Phát biểu quy tắc đổi dấu ?
Điền đa thức thích hợp vào chỗ trống :
Hoạt động 2 : 
Rút gọn phân thức :
Phân số chưa tối giản là phân số như thế nào ?
Phân số tối giản là phân số như thế nào?
Phân thức cũng có tính chất giống như tính chất cơ bản của phân số . Ta hãy xét xem có thể rút gon phân thức như thế nào ?
Các em thực hiện 
Cho phân thức 
Tìm nhân tử chung của cả tử và mẫu ?
Chia cả tử và mẫu cho nhân tử chung 
Làm như vậy gọi là rút gọn phân thức 
Các em thực hiện 
Cho phân thức 
phân tích tử và mẫu thành nhân tử rồi tìm nhân tử chung của chúng 
b) Chia cả tử và mẫu cho nhân tử chung
Vậy rút gọn phân thức là gì ?
Các em hoạt động theo nhóm để thực hiện 
Rút gọn phân thức 
Chú ý :
Có khi cần đổi dấu ở tử hoặc mẫu để nhận ra nhân tử chung của tử và mẫu 
(lưu ý tới tình chất A = - ( - A ))
Các em thực hiện 
Rút gọn phân thức 
Tử thức và mẫu thức đã có nhân tử chung nào chưa ?
Vậy để có nhân tử chung ta phải làm sao?
Hoạt động 2 : 
Củng cố : 
Ba em lên bảng làm ba bài tập sau :
Rút gọn các phân thức :
7 / 39 a) 
 c) 
và 
Hướng dẫn về nhà :
Làm thật nhiều bài tập để nắm vững cách rút gọn
Bài tập về nhà : 
7 b, d; 8, 9, 11tr 39, 40
= 
( x, y 0 )
= 
( x0 và x –2 )
Vậy rút gọn phân thức là:
- Phân tích tử và mẫu thành nhân tử ( nếu cần ) để tìm nhân tử chung 
Chia cả tử và mẫu cho nhân tử chung 
Rút gọn phân thức 
 Giải 
=
( x0 và x -1 )
Rút gọn phân thức 
 Giải 
= = –3 
( x y )
7 / 39 Rút gọn các phân thức
= 
(x, y 0 )
c) = 
 ( x -1 )
và = 
( x 1 )
Muốn rút gọn một phân thức ta có thể :
- Phân tích tử và mẫu thành nhân tử ( nếu cần ) để tìm nhân tử chung 
- Chia cả tử và mẫu cho nhân tử chung 
Ví dụ 1 :
Rút gọn phân thức
 Giải 
= 
=
 ( x)
Ví dụ 2:
Rút gon phân thức 
 Giải 
=
( x 0, x 1 )
Ngày soạn: 30/11/2008
Tuần : 13	Tiết : 25 Luyện tập 	 
 I) Mục tiêu : 
Củng cố kiến thức phân tích đa thức thành nhân tử, hằng đẳng thức đáng nhớ
Rèn luyện kỉ năng rút gọn phân thức 
II) Chuẩn bị của giáo viên và học sinh : 
 GV: Giáo án , bảng phụ ghi đề các bài tập
 HS : Ôn lại các hằng đẳng thức đáng nhớ , làm các bài tập đã ra về nhà ở tiết trước
III) Phương phỏp: Vấn đỏp, luyện tập và thực hành.
IV) Tiến trình dạy học: 
Hoạt động của giáo viên
Hoạt động của học sinh
Hoạt động 1 : Kiểm tra bài cũ 
HS 1:
Để rút gọn phân thức ta có thể làm như thế nào ?
Giải bài tập 11 trang 40
HS 2 :
Có khi cần đổi dấu ở tử hoặc mẫu để nhận ra nhân tử chung của tử và mẫu ta sử dụng tính chất nào ?
Đa tức x - 1 và và đa thức 1 - x là hai đa thức như thế nào với nhau ? Vậy x - 1 = - ( ..........)
Giải bài tập 12 trang 40
HS 3 :
Ghi lại 7 hằng đẳng thức đáng nhớ ?
Một em lên bảng giải bài tập 13 a) trang 40
Một em lên bảng giải bài tập 13 b) trang 40
Bài tập làm thêm :
Phân tích các phân thức sau thành nhân tử :
a)
b) 
Củng cố : 
Chú ý : Các em không được nhầm lẫn rằng :
( 2 - x )2 = - ( x - 2 )2 mà ( 2 - x )2 = ( x - 2 )2 vì 
( 2 - x )2 = [- ( x - 2 )]2 = [ - ( x - 2 )] [ - ( x - 2 )]
= ( 2 - x )2
Tổng quát :
( a - b )2n = ( b - a )2n ; ( a - b )2n + 1 = - ( b - a )2n + 1
 với n N*
HS 1 :
Phát biểu nhận xét
Tất cả các em làm bài tập phần luyện tập vào vở
11 / 40 Rút gọn phân thức 
a) b) 
 Giải 
a) = (x, y 0 )
b) = 
( x 0, x -5 )
HS 2 :
Có khi cần đổi dấu ở tử hoặc mẫu để nhận ra nhân tử chung của tử và mẫu ta sử dụng tính chất :
A = - ( - A )
Đa tức x - 1 và đa thức1 - x là hai đa thức đối nhau 
Vậy x - 1 = - ( 1 - x ) 
12 / 40 Phân tích tử và mẫu thành nhân tử rồi rút gọn phân thức :
a) b) 
 Giải 
a) =
 = 
=
 = ( x 0 , x -1 )
13 / 40 áp dụng quy tắc đổi dấu rồi rút gọn phâm thức
a) b) 
 Giải 
 = = 
 = 
Bài tập làm thêm :
Phân tích các phân thức sau thành nhân tử :
a) b) 
 Giải 
a) = 
b) = =
Tuần : 13 Tiết : 26	 quy đồng mẫu thức của nhiều phân thức 
I) Mục tiêu : 
Học sinh biết cách tìm mẫu thức chung sau khi đã phân tích các mẫu thức thành nhân tử. Nhận biết được nhân tử chung trong trường hợp có những nhân tử đối nhau và biết cách đổi dấu để được nhân tử chung 
Học sinh nắm được quy trình quy đồng mẫu thức 
Học sinh biết cách tìm nhân tử phụ và phải nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng để được những phân thức mới có mẫu thức chung 
II) Chuẩn bị của giáo viên và học sinh : 
 GV : Giáo án , bảng phụ vẽ kẻ bảng cách tìm mẫu thức chung trang 41
 HS : Ôn lại cách quy đồng mẫu số hai hay nhiều phân số, cộng trừ phân số
III) Phương phỏp: Vấn đỏp, luyện tập và thực hành, Phỏt hiện và giải quyết vấn đề
IV) Tiế ...  chiếu 
Bài 3 : Rút gọn biểu thức 
a) ( 2x + 1 )2 + ( 2x - 1 )2 – 2(1 + 2x )( 2x –1)
b) ( x – 1 )3 – ( x + 2)(x2 – 2x + 4) + 3(x – 1)(x + 1)
Bài 4 : Tính nhanh giá trị của mỗi biểu thức sau:
x2 + 4y2 – 4xy tại x = 18 và y = 4
34.54 – (152 + 1)(152 – 1)
Hoạt động 2 : 
 Phân tích đa thức thành nhân tử 
Thế nào là phân tích đa thức thành nhân tử ?
Hãy nêu các phương phàp phân tích đa thứcthành nhân tử ?
Bài 5 : Phân tích các đa thức sau thành nhân tử :
x3 – 3x2 – 4x + 12
2x2 – 2y2 – 6x – 6y
x3 + 3x2 – 3x – 1
x4 – 5x2 + 4
Các em hoạt động nhóm để giải bài 6
Tổ 1 và 2 làm câu a - b
Tổ 3 và 4 làm câu c - d
Bài 6 : Tìm x biết :
3x3 – 3x = 0
 b) x3 + 36 = 12x
HS:
Phát biểu các quy tắc và viết công thức tổng quát 
A.( B + C ) = AB + AC
(A + B)(C + D) = AC + AD + BC + BD
Bài 1 : Giải 
a) 
= 
b) ( x + 3y )( x2 – 2xy )
= x3 - 2x2y + 3x2y - 6xy2 
= x3 + x2y - 6xy2
Bài 2 : Hoạt động theo nhóm 
Kết quả :
 a – d
 b – c
 c – b
 d – a
 e – g
 f – e
 g - f
Đại diện một nhóm lên trình bày bài làm 
Các nhóm khác góp ý kiến 
Bài 3 : Rút gọn biểu thức 
a) ( 2x + 1 )2 + ( 2x - 1 )2 – 2(1 + 2x )( 2x –1)
= = = 22 = 4
b) ( x – 1 )3 – ( x + 2)(x2 – 2x + 4) + 3(x – 1)(x + 1)
= x3 – 3x2 + 3x – 1 – ( x3 + 8 ) + 3( x2 - 1 )
= x3 – 3x2 + 3x – 1 – x3 – 8 + 3x2 –3
= 3x – 12 = 3( x – 4 )
Bài 4 : Tính nhanh giá trị của mỗi biểu thức sau:
x2 + 4y2 – 4xy tại x = 18 và y = 4
34.54 – (152 + 1)(152 – 1)
 Giải
a) x2 + 4y2 – 4xy = ( x – 2y )2 = ( 18 – 2.4)2 = 100
b) 34.54 – (152 + 1)(152 – 1)
= (3.5)4 – ( 154 – 1 ) = 154 – 154 + 1 = 1
HS : Phân tích đa thức hành nhân tử là biến đổi đa thức đó thành một tích của những đa thức 
Các phương pháp phân tích đa thức thành nhân tử là: 
Phương pháp đặc nhân tử chung 
Phương pháp dùnh hằng đẳng thức đáng nhớ 
Phương pháp nhóm hạnh tử 
Phương pháp tách hạng tử 
Phương pháp thêm bớt hạng tửGiải
Bài 6 : Phân tích các đa thức sau thành nhân tử :
x3 – 3x2 – 4x + 12
 = x2( x – 3 ) – 4( x – 3 ) 
 = (x – 3)(x2 – 4) = ( x – 3 )( x + 2)( x – 2 )
 b) 2x2 – 2y2 – 6x – 6y
 = 2( x2 – y2 – 3x – 3y )
 =
 = 
 = 2( x + y )( x – y –3)
c) x3 + 3x2 – 3x – 1
 = ( x3 – 1 ) + ( 3x2 – 3x )
 = ( x – 1 )( x2 + x + 1 ) + 3x( x – 1 ) 
 = ( x – 1 )( x2 + x + 1 + 3x ) 
 = ( x – 1 )( x2 + 4x +1 )
x4 – 5x2 + 4
 = x4 - x2 - 4x2 + 4 = x2( x2 - 1 ) - 4(x2 - 1 )
 = ( x2 – 1 )( x2 – 4 )
 = ( x + 1 )( x – 1 )( x + 2 )( x – 2 )
Bài 6 : Tìm x biết :
3x3 – 3x = 0 b) x3 + 36 = 12x
 Giải 
a) 3x3 – 3x = 03x( x2 – 1 ) = 0
	3x( x – 1 )( x + 1 ) = 0
	x = 0 hoặc x - 1 = 0 hoặc x + 1 = 0
 x = 0 hoặc x = 1 hoặc x = -1
x3 + 36 = 12x x3 + 36 – 12x = 0 
( x – 6)2 = 0 ( x – 6 ) = 0 x = 6
Tuần : 17	Tiết 39	Ôn tập đại số ( tiết 2)	 
I) Mục tiêu : 
Tiếp tục củng cố cho học sinh các khái niệm và quy tắc thực hiện các phép tính trên các phân thức 
Tiếp tục rèn luyện kĩ năng thực hiện phép tính, rút gọn biểu thức, tìm ĐK , tìm giá trị của biến số x để biểu thức xác định , bằng 0 hoặc có giá trị nguyên, lớn nhất, nhỏ nhất 
II) Chuẩn bị của giáo viên và học sinh : 
GV : Giáo án, đèn chiếu và các phim giấy trong ghi đề bài 
HS : Ôn tập theo các câu hỏi ôn tập chương I và II 
III) Tiến trình dạy học : 
Hoạt động của giáo viên
Hoạt động của học sinh
Hoạt động 1 : 
Ôn tập lí thuyết thông qua bài tập trắc nghiệm 
Đưa đề bài lên màn hình 
Các em hoạt động theo nhóm 
Tổ 1 & 2 làm 5 câu đầu
Tổ 3 & 4 làm 5 câu sau
Đề bài :
Xét xem các câu sau đúng hay sai ?
1) là một phan thức đại số 
2) Số 0 không phải là một phân thức đại số
3) 
4)
5)
6) phân thức đối của phân thức là
7) Phân thức nghịch đảo của phân thức là x + 2
8) 
9) 
10) Phân thức có ĐK là 
Đại diện các nhóm giải thích cơ sở bài làm của nhóm , thông qua đó ôn lại :
Định nghĩa phân thức 
Hai phân thức bằng nhau
Tính chất cơ bản của phân thức 
Quy tắc các phép toán 
ĐK của biến 
Hoạt động 2 : Luyện tập 
Bài 1 : Chứng minh đẳng thức :
Bài 2 : Cho biểu thức 
P = 
a) Tìm điều kiện của biến để giá trị của biểu thức xác định
b) Tìm x để P = 0
c) Tìm x để P = –
d) Tìm x để P > 0; P < 0
Một phân thức lớn hơn 0 khi nào ?
P > 0 khi nào ?
Một phân thức nhỏ hơn 0 khi nào ?
Hướng dẫn về nhà :
Ôn tập kĩ lí thuyết chương I và II
Xem lại các dạng bài tập , trong đó có bài tập trắc nghiệm 
Chuẫn bị kiểm tra học kỳ I
Đ
S ( Số 0là một phân thức đại số )
S ( x + 1 )
Đ
Đ
S ( )
Đ
Đ
S ()
S ( x, )
HS làm bài vào vở . Một em lên bảng làm bài
Biến đổi vế trái ta có :
VT=
=
=
==VP
Sau khi biến đổi VT = VP vậy đẳng thức được CM 
Bài 2 : : Cho biểu thức 
P = 
a) Biểu thức P xác định khi : 2x + 10 0; x 0; 2x( x + 5 ) x 0 và x –5
b) Rút gọn phân thức 
P = 
= 
=
= =
==
b) P = 0 khi x – 1 = 0 x = 1 (TMĐK)
c) P = –khi 4x – 4 = – 2
 4x = 2 x = ( TMĐK )
d) Một phân thức lớn hơn 0 khi tử và mẫu cùng dấu 
P = có mẫu dương, vậy để p > 0 x - 1 > 0
x >1 kết hợp với ĐK của biến thì P > 0 khi x > 1
Một phân thức nhỏ hơn 0 khi tử và mẫu trái dấu
P = có mẫu dương, vậy để p < 0 x - 1 < 0
x <1 kết hợp với ĐK của biến thì P < 0 khi x < 1
và x 0; x –5
Tuần 17 Tiết 38	 	 ôn tập chương II ( tiết 1 )	
I) Mục tiêu :
* Học sinh được củng cố vững chắc các khái niệm :
+ Phân thức đại số 	 + Hai phân thức bằng nhau
+ Phân thức đối	 + Phân thức nghịch đảo
+ Biểu thức hữu tỉ 	 + Tìm điều kiện của biến để giả trị của phân thức được xác định
* Tiếp tục cho học sinh rèn luyện kĩ năng vận dụng các quy tắc cộng, trừ, nhân, chia trên các phân thức và thứ tự thực hiện các phép tính trong một biểu thức
II) Chuẩn bị của giáo viên và học sinh : 
GV: Giáo án, bảng tóm tắc chương II trên giấy trong 
HS : Làm đáp án 12 câu hỏi ôn tập chương II và các bài tập đã cho về nhà
III) Tiến trình dạy học : 
Hoạt động của giáo viên
Hoạt động của học sinh
R
Đa
thức
Phân
thức
đại
số
Hoạt động 1 : 
Ôn tập khái niệm về phân thức đại số và tính chất của phân thức đại số
Các em trả lời câu hỏi 1 tr 61 SGK 
( GV đưa nội dung câu hỏi lên bảng )
Sơ đồ thể hiện mối quan hệ giữa tập R , tập đa thức và tập phân thức đại số 
Các em trả lời câu hỏi 2
GV đưa phần 1 của bảng tóm tắc tr 60 SGK lên màn hình để HS ghi nhớ
Các em giải bài 57 tr 61 SGK
Chứng tỏ mỗi cặp phân thức sau bằng nhau :
a) và 
Bài này có mấy cách làm ?
Mỗi em lên bảng làm một cách
Hoạt động 2 :
Ôn tập các phép toán trên tập hợp các phân thức đại số
Các em trả lời câu hỏi 6
( GV đưa nội dung câu hỏi lên bảng )
Muốn quy đồng mẫu thức nhiều phân thức ta làm thế nào ?
Phát biểu quy tắc trừ hai phân thức đại số ?
Thế nào là hai phân thức đối nhau ? 
Phát biểu quy tắc nhân hai phân thức đại số ?
Phát biểu quy tắc chia hai phân thức đại số ?
Một HS trả lời câu hỏi 1
1) Phân thức đại số là biểu thức có dạng với A, B là những đa thức và B khác đa thức 0
Mỗi đa thức được coi là một phân thức đại số với mẫu bằng 1. Mỗi số thực bất kì là một phân thức đại số 
Một HS trả lời câu hỏi 2
2) Hai phân thức bằng nhau:nếu A.D = B.C Một HS trả lời câu hỏi 3
3) ( SGK tr 37 )
 ( M là đa thức khác đa thức 0 )
 ( N là một nhân tử chung )
57 / 61
Bài này có hai cách làm 
Cách 1 :
Dùng định nghĩa hai phân thức bằng nhau 
3( 2x2 + x - 6 ) = 6x2 + 3x - 18
( 2x - 3 )( 3x + 6 ) = 6x2 + 3x - 18
3( 2x2 + x - 6 ) = ( 2x - 3 )( 3x + 6 )
=
Cách 2 : Rút gọn phân thức :
==
=
1) Phép cộng
HS phát biểu quy tắc cộng hai phân thức cùng mẫu, cộng hai phân thức khác mẫu 
Một HS lên bảng làm tính cộng
=
==
==
HS nêu ba bước quy đồng mẫu thức nhiều phân thức 
2) Phép trừ 
– HS Phát biểu quy tắc trừ phân thức cho phân thức ( tr 49 SGK )
– Hai phân thức đối nhau là hai phân thức có tổng bằng 0
Phân thức đối của phân thức là phân thức hoặc 
Phép nhân
 HS phát biểu quy tắc nhân hai phân thức tr 51 SGK
4) Phép chia
– HS phát biểu quy tắc chia phân thức cho phân cho phân thức khác 0 ( tr 54 SGK )
Bài 58 c) / 62
Thực hiện các phép tính sau :
=
=
==
Tuần : 20 Tiết 39 ôn tập chương II ( tiết 2) 
I) Mục tiêu : 
Tiếp tục củng cố cho HS các khái niệm về biểu thức hữu tỉ, phân thức đại số.
Tiếp túc rèn luyện kĩ năng rút gọn diểu thức, tìm điều kiện của biến, tính giá trị của biểu thức, tìm giá trị của biến để phân thức bằng 0.
Cho HS làm một vài bài tập phát triển tư duy dạng : tìm giá trị của biến để giá trị của biểu thức nguyên, tìm giá trị lớn nhất(hoặc nhỏ nhất) của biểu thức. 
II) Chuẩn bị của giáo viên và học sinh : 
GV : Đèn chiếu, giấy trong ghi đề bài các bài tập 
HS : Ô tập lí thuyết và làm các bài tập theo yêu cầu của giáo viên
III) Tiến trình dạy học : 
Hoạt động của giáo viên
Hoạt động của học sinh
Hoạt động 1 : Kiểm tra bài cũ 
HS 1: Định nghĩa phân thức đại số ? Cho ví dụ ?
Phát biểu tính chất cơ bản của phân thức ?
Chữa bài tập 58 (b) tr 62 SGK
( GV đưa đề bài lên màn hình )
Một em chữa bài tập 60 tr 62
- Điều kiện của biến để giá trị biểu thức xác định là gì ?
Muốn chứng minh giá trị của biểu thức không phụ thuộc vào biến ( khi giá trị biểu thức đã được xác định ) ta cần làm thế nào ?
Hoạt động 2 : Luyện tập 
Bài 1 : Cho :
Tìm đa thức A
Tính A tại x = 1 ; x = 2
Tìm giá trị của x để A = 0
Bài 62 tr 62 SGK
Tìm giá trị của x để giá trị của phân thức bằng 0
Bài này có phải tìm ĐK của biến của phân thức không ?
- Hãy tìm ĐK của biến ?
- Rút gọn phân thức ?
- Phân thức bằng 0 khi nào ?
áp dụng với phân thức 
Có phải x = 5 thì phân thức đã cho bằng 0 hay không ?
Câu hỏi bổ sung :
Tìm các giá trị nguyên của x để giá trị của phân thức cũng là số nguyên ?
Hướng dẫn về nhà : 
Ôn tập các câu hỏi lí thuyết và các dạng bài tập của chương
Bài tập về nhà : 63 (b) , 64 tr 62 SGK
HS 1 :
– Trả lời câu hỏi, cho ví dụ 
Bài 58 (b) / 62 
 Giải 
=
===
Bài 60 / 62 
 Giải 
a) 2x – 2 = 2( x - 1 ) 
 x2 – 1 = ( x + 1 )( x - 1 )
 2x + 2 = 2( x + 1 ) 
Vậy ĐK của biến là x 
b) 
=
=
==
Vậy khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến x
Các em hoạt động theo nhóm 
 Giải
A = 
 A = 
 A = 
 A = ( 3 - 4x )( x + 1 ) = 3 - x - 4x2 
b) ĐK của biến là : x 
Tại x = 1, giá trị biểu thức A không xác định 
Tại x = 2 ( thoả mãn điều kiện )
A = 3 - 2 - 4.22 = - 15
c) A = 0 ( 3 - 4x )( x + 1 ) = 0 
	3 - 4x = 0 hoặc x + 1 = 0
	x = hoặc x = -1 ( loại )
Vậy A = 0 khi x = 
Bài 62 tr 62 SGK Giải 
Bài tập này phải tìm ĐK của biến vì có liên quan đến giá trị phân thức 
Phân thức được xác định khi :
 và x 5
Vậy ĐK của biến là x 0 và x 5
Rút gọn phân thức 
= 
Phân thức = 0 
x = 5 không thoả mãn ĐK của biến . Vậy không có giá trị nào của x để giá trị của phân thức bằng 0
Có 1 là số nguyên , vậy giá trị của phân thức là nguyên khi là số nguyên x Ư(5) hay 
nhưng theo ĐKXĐ thì x = 5 loại
Vậy với x thì phân thức có giá trị là số nguyên

Tài liệu đính kèm:

  • docGAM(1).doc