Giáo án Đại số lớp 8 năm 2006 - Tiết 10: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức

Giáo án Đại số lớp 8 năm 2006 - Tiết 10: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức

A) Mục tiêu:

- HS hiểu được cách phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức.

- HS biết cách vận dụng các hằng đẳng thức đã học vào việc phân tích đa thức thành nhân tử.

B) Chuẩn bị:

GV : Bảng phụ; giấy trong, đèn chiếu, phấn màu.

HS: Vận dụng HĐT đã học vào phân tích đa thức thành nhân tử

C) Tiến trình bài dạy:

 I) Kiểm tra:

 GV sử dụng bảng phụ

- HS1: Viết tiếp vào vế phải để được các hằng đẳng thức

 A2+2AB+B2¬¬=. A3+3A2B+3AB2+B3=.

 A2-2AB+B2=. A3-3A2B+3AB2-B3=.

 A2-B2=. (A+B)3=.

 (A-B)3=.

- HS2: Tìm x biết:

 5x(x-2000) – x+2000 =0

 

doc 3 trang Người đăng nhung.hl Lượt xem 2150Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Đại số lớp 8 năm 2006 - Tiết 10: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày 15/9/2002
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
BẰNG PHƯƠNG PHÁP DÙNG HẰNG ĐẲNG THỨC
Tiết 10:
A) Mục tiêu: 
- HS hiểu được cách phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức.
- HS biết cách vận dụng các hằng đẳng thức đã học vào việc phân tích đa thức thành nhân tử.
B) Chuẩn bị: 
GV : Bảng phụ; giấy trong, đèn chiếu, phấn màu.
HS: Vận dụng HĐT đã học vào phân tích đa thức thành nhân tử
C) Tiến trình bài dạy: 
	I) Kiểm tra:
 GV sử dụng bảng phụ 
- HS1: Viết tiếp vào vế phải để được các hằng đẳng thức
	A2+2AB+B2=.................... A3+3A2B+3AB2+B3=.............................
	A2-2AB+B2=..................... A3-3A2B+3AB2-B3=...............................
	A2-B2=.................... (A+B)3=....................................................
 (A-B)3=...................................... 
- HS2: Tìm x biết:
 5x(x-2000) – x+2000 =0
	II) Bài mới: 
Hoạt động của thầy và trò 
- GV:Phân tích đa thức thành nhân tử: x2-4x+4
Bài toán này dùng pp đặt nhân tử chung được không? Vì sao?
- HS: Không dùng được pp này vì tất cả các hạng tử của đa thức không có nhân tử chung
- GV: Bằng cách nào để biến đổi thành tích
- HS: Đa thức có thể viết được dưới dạng bình phương của một hiêu.
- GV: Cách làm như trên gọi là phân tích đa thức thành nhân tử bằng pp dùng hằng đẳng thức
- GV: Phân tích a) x3+3x2+3x+1 đa thức thành nhân tử
 x2-2; 1-8x3
Cho biết mỗi vd dùng hằng đẳng thức nào để phân tích đa thức thành nhân tử
- HS: Hiêu hai bình phương; hiệu hai lập phương
- GV: Hướng dẫn hs làm ?1
Phân tích đa thức thành nhân tử
 a) x3+3x2+3x+1 . Đa thức này có 4 hạng tử ta có thể dùng hằng đẳng thức nào ?
 Dùng hằng đẳng thức lập phương của một tổng
 b) (x+y)2-9x2
- GV: Dùng hằng đẳng thức nào ?
 Hiệu hai bình phương 
- GV: Tính nhanh 1052-25
Nêu phương pháp tính nhanh
 Viêt dưới dạng tích, sử dụng HĐT hiệu hai bình phương
- GV: Chứng minh rằng (2n+5)2-25 chia hết cho 4 với mọi số nguyên n
Để chứng minh đa thức chia hết cho 4 ta làm thế nào ? 
 Ta cần biến đổi đa thức thành một tích trong đó có thừa số là bội của 4
Ghi bảng 
I) Ví dụ: Phân tích các đa thức sau thành nhân tử:
 a) x2-4x+4 =x2-2.x.2+22=(x-2)2
 b) x2-2 = x2- ()2=(x-)(x+)
 c) 1-8x3=13- (2x)3=(1-2x)(1+2x+4x2)
?1 Phân tích đa thức thành nhân tử
 a) x3+3x2+3x+1= x3+3.x2.1+3.x.12+13
 = ( x+1)3
 b) (x+y)2-9x2= (x+y)2-(3x)2
 = (x+y+3x)(x+y-3x)
 = (4x+y)(y-2x)
 ?2 Tính nhanh 1052-25
 1052-25=1052-52
 =(105-5)(105+5)=12000 
II) Áp dụng:
Chứng minh rằng (2n+5)2-25 chia hết cho 4 với mọi số nguyên n
Giải: Ta có
(2n+5)2-52=(2n+5-5)(2n+5+5)
 = 2n.(2n+10)
 = 2n.2(n+5)=4n(n+5)
Nên (2n+5)2-25 chia hết cho 4 với mọi số nguyên
	III) Củng cố: 
1) Làm bài tập 43tr20 sgk Phân tích đa thức thành nhân tử
GV: Yêu cầu HS làm trên giấy trong đèn chiêú, Giáo viên chuẩn bị sẵn dấp án
 a) x2+6x+9=x2+2.x.3+32=(x+3)2
	c) 8x3-= (2x)3-()3=(2x-)(4x2+x+)
2) Làm bài tập 44 tr20 Phân tích đa thức thành nhân tử
- GV: Yêu cầu hs làm bài theo nhóm
 IV)hướng dẫn về nhà:
- Ôn lại , chú ý dùng hằng đẳng thức cho phù hợp
- Bài tập về nhà: 44c,d;45;46 sgk
	 29,30 tr6 sbt

Tài liệu đính kèm:

  • doc10.doc