Giáo án Đại số 8 tiết 15 đến 18

Giáo án Đại số 8 tiết 15 đến 18

TIẾT 15 : LUYỆN TẬP

I. MỤC TIÊU: Qua bài học này HS cần nắm được :

* Về kiến thức : Cũng cố định nghĩa về : hai điểm đối xứng với nhau qua một điểm, hai hình đối xứng với nhau qua một điểm, tâm đối xứng của một hình và định lý về tâm đối xứng của hình bình hành là giao điểm của hai đường chéo của nó.

* Về thự c hành : HS biết nhận dạng hình ảnh có tâm đối xứng, hình có tâm đối xứng , biết chứng minh dựa vào tâm đối xứng .

* Về ý thức học tập và áp dụng thực tế :

- HS tiếp tục rèn luyện tính tự giác học tập theo sự hương dẩn của người thầy.

- Biết liên hệ thực tế các hình ảnh có tâm đối xứng và áp dụng vào thực tế khi làm vật có tâm đối xứng để cân bằng .

 

doc 9 trang Người đăng ngocninh95 Lượt xem 1139Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Đại số 8 tiết 15 đến 18", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tuần: 8
Tiết: 15
TIẾT 15 : LUYỆN TẬP
I. MỤC TIÊU: Qua bài học này HS cần nắm được :
* Về kiến thức : Cũng cố định nghĩa về : hai điểm đối xứng với nhau qua một điểm, hai hình đối xứng với nhau qua một điểm, tâm đối xứng của một hình và định lý về tâm đối xứng của hình bình hành là giao điểm của hai đường chéo của nó.
* Về thự c hành : HS biết nhận dạng hình ảnh có tâm đối xứng, hình có tâm đối xứng , biết chứng minh dựa vào tâm đối xứng .
* Về ý thức học tập và áp dụng thực tế :
HS tiếp tục rèn luyện tính tự giác học tập theo sự hươÙng dẩn của người thầy.
Biết liên hệ thực tế các hình ảnh có tâm đối xứng và áp dụng vào thực tế khi làm vật có tâm đối xứng để cân bằng .
II. CÁC HOẠT ĐỘNG DẠY VÀ HỌC :
1 : Ổn định lớp.
2 : Kiểm tra bài cũ:
 HS1 : Nêu các định nghĩa về : Hai điểm đối xứng với nhau qua một điểm, hai hình đối xứng qua một điểm, tâm đối xứng của một hình?
HS2 : Nêu các định lý về : hai hình đối xứng , tâm đối xứng của hình bình hành?
HS3 : Hãy làm bài tập 53 trang 96 SGK?
3: Tiến hành luyện tập:
HOẠT ĐỘNG CỦA THẦY VÀ HS
NỘI DUNG
BT 54/96 SGK
? Hãy vẽ hình và ghi gt/kl của bài?
? Để chứng minh B và C đối xứng với nhau qua O ta cần chứng minh điều gì?
? Để chứng minh B, O, C thẳng hàng và OB = OC ta phải lần lượt chứng minh gì?
? OB = OC khi nào ?
? D OIB và D CKO có những gì ? Vì Sao ?
? BIKO, IKCO lần lượt là những hình gì? Vì sao?
? Khi đó IK và OB ; IK và OC thế nào?
? Nếu có hai đường thẳng có một điểm chung và cùng song song với một đường thẳng thứ ba thì hai đường thẳng đó thế nào?
? Vậy hãy trình bày chứng minh bài 54?
GV chốt lại bài làm .
BT 55 / 96 SGK
? Hãy vẽ hình và ghi GT/KL?
? Ta đã có M,O,N thẳng hàng vậy muốn chứng minh M và N đx với nhau qua O ta cần chứng minh gì?
? Để chứng minh OM = ON ta chứng minh gì?
Vậy hãy trình bày chứng minh?
GV chốt lại.
BT 56/96 SGK
? Hãy chỉ ra trong các hình trong hình 83 hình nào có tâm đối xứng? Vì sao ?
GV chốt lại.
BT 57/96 SGK
? Hãy xác định các phát biểu trong bài 57 đúng hay sai? Vì sao ?
? Có thể phát biểu lại các phát biểu sai cho đúng?
GV chốt lại.
BT 54/96 SGK
 GT A nằn trong góc
 I 	B đx A qua Ox
 C đx A qua Oy
 K KL B đx C qua O
Chứng minh : B đx C qua O
Ta có : AI ^ Ox (đx), OK ^ Ox (Oy ^ Ox)
Nên : IA // OK .
Ta lại có : OI ^ Oy (Ox ^ Oy); AK ^ Oy
Nên : OI // AK
Suy ra : IA = OK; OI = AK.
Mà : IA = IB ; AK = KC (đx)
Nên : IB = OK; OI = KC
Mặc khác : 
Nên : D OIB = D CKO (c-g-c)
Suy ra : OB = OC (1)
Ta lại có:BIKO là hình bình hành(BI=OK;BI//OK)
Nên : IK // BO. (2)
Mặc khác:IKCO là hình bình hành(OI=CK;OI//CK)
Nên : IK // OC (3)
Từ 2 và 3 suy ra : B, O, C thẳng hàng. (4)
Từ 1 và 4 suy ra : B và C đx với nhau qua O.
BT 55 / 96 SGK
Chứng minh : 
Ta có : đđ)
 (đđ)
 OA = OC (t/c HBH)
Nên : D AMO = D CNO (g-c-g)
Suy ra : OM = ON (1)
Mà : M, O, N thẳng hàng (2)
Từ 1 và 2 suy ra : M và N đx qua O (đpcm)
BT 56/96 SGK
Hình có tâm đối xứng là 83a, 83c
Vì trong hai hình đó có một O điểm mà khi lấy một điểm bất kỳ thuộc hình đó có một điểm củng thuộc hình đó đối xứng với nhau qua điểm O
BT 57/96 SGK
HS trả lời 
4.CỦNG CỐ :
 Trong hình bình hành bất kỳ một điểm nào thuộc một cạnh của nó cũng có một điểm thuộc cạnh đối đx với ná qua giao điểm của hai đường chéo.
? Để chứng minh hai điểm đối xứng với nhau qua một điểm ta cần chứng minh thoả mản những điều kiện nào?
HS :
GV : Chốt lại.
5.HƯỚNG DẪN VỀ NHÀ :
-Học lại các kiến thức về : Hình thang cân, hình bình hành, tính chất đối xứng.
-Làm lại các bài tập vừa giải.
-Xem trước bài “ 
Tuần: 8
Tiết: 16
HÌNH CHỮ NHẬT
I/Mục tiêu :
-Hs hiểu được định nghĩa hình chữ nhật, các tính chất của hình chữ nhật, các dấu hiệu nhận biết một tứ giác là hình chữ nhật,biết vẽ một hình chữ nhật
II/Các họat động trên lớp. 
 1 : Ổn định lớp.
 2 : Kiểm tra bài cũ:
? Hãy vẽ tứ giác ABCD có , Tính = ?
3.Bài mới:
Họat động của GV
Họat động của HS
Nội dung
Họat động 1
Cho tứ giác ABCD như hình vẽ có .Tính = ?
A	B
D C
_ Ta nói ABCD là một hình chữ nhật .Vậy theo em hình chữ nhật là một tứ giác có đặc điểm gì về góc?
_ Vẽ hình ABCD lên bảng và cho hs ghi 
_ Hãy tìm ví dụ trong thực tếvề hình chữ nhật .	
_ Cho hình hình hành ABCD có Â= 900 . Tính các góc còn lại của hình bình hành ABCD.
 A	 B
 D C
_Vậy theo đề bài cho HBH có điều kiện gì thì trở thành HCN?
_ Vậy có 2 cách để định nghĩa HCN
Họat động 2: Tính chất (6’)
_ Hãy nhắc lại các tính chất của HTC , HBH
_Vì HCN vừa là HTC , vừa là HBH nên HCN có những tính chất gì?
_Cho hs ghi tính chất trong SGK.
Họat động 3 : Dấu hiệu nhận biết (14’)
+ Dựa vào định nghĩa để chứng minh một tứ giác là HCN ta cần chứng minh tứ giác đó có mấy góc vuông. Vì sao
_Nêu dấu hiệu 1
+ Nếu tứ giác là htc thì cần đk gì về góc thì trở thành là HCN.
_ Nêu dấu hiệu 2
+ Nếu tứ giác là HBH thì cần thêm có đk gì thì là HCN?
_ Dấu hiệu 3,4 
_Cũng cố 
Tứ giác có hai góc vuông có phải là HCN không?
Hình thang có một góc vuông có phải là HCN không?
Tứ giác có hai đường chéo bằng nhau có phải là HCN không?
_Tổng 4 góc trong tứ giácbằng 3600
 Nên = 900
_ Là tứ giác có 4 góc vuông
-Khung cửa sổ, đường viền mặt bàn, quyển sách 
Hs lên bảng tính : 
( vì AB//CD)
Nên 
_ Là HBH có một góc vuông.
_ cóAB// CD (cùng vuông góc với AD) và nên HCN ABCD cũng là HTC 
_ HBH : 
+ Có các cạnh đối bằng nhau	
+ Có hai góc đối bằng nhau
+ Hai đường chéo cắt nhau tại trung điểm của mỗi đường.
_ HTC :
+ Có hai cạnh bên bằng nhau.
- Tứ giác có 3 góc vuông ( góc còn lại cũng vuông).
_Có thêm một góc vuông
+ Có một góc vuông
+ Có hai đường chéo bằng nhau.
_ Hs trả lời lần lượt 
- không là HCN.
- Hình thang có một góc vuông không phải là HCN
- Tứ giác có hai đường chéo bằng nhau khôngù phải là HCN
_ Hs kiểm tra bằng Compa
C1: AC= BD và OA=OB=OC=OD
C2:AB=CD; AD=BC và AC=BD
_ Hs làm ?3
a) Tứ giác ABDC có hai đường chéo cắt nhau tại trung diểm của nỗi đường do đó tứ giác ABCD là HBH có Â= 900 nên là HCN
b) ABCD là HCN : AC=BD
Mà AM= AD = BC
_ Phát biểu định lí
?4: a. Tứ giác ABDC có hai đường chéo cắt nhau tại trung diểm của nỗi đường do đó tứ giác ABCD là HBH và AD=BC nên là HCN
b. Tam giác ABC là tam giác vuông vì Â= 900(ABCD là 
HCN)
c. _ Phát biểu định lí
1. Định nghĩa
 A B
 C D
_ Ta nói ABCD là một hình chữ
- Tứ giác ABCD là hình chữ nhật 
-Nhận xét:
HCN là một HBH đặc biệt , cũng là mộ HTC đặc biệt)
2. Tính chất:
HCN vừa là HTC , vừa là HBH nên HCN có những tính chất của hình bình hành và hình thang cân.
3. Dấu hiệu nhận biết
- Tứ giác có 3 góc vuông là HCN.
-Hình thang cân có một góc vuông là hình chữ nhật
- HBH có một góc vuông là hình chữ nhật
- HBH Có hai đường chéo bằng nhau là hình chữ nhật
4.Vận dụng vào tam giác vuông
 M
 A
 C
B
 D
* Định lý 1: Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một phần hai cạnh huyền.
 A
 B M D
	 C 	
Định lý 2: 
Trong một tam giác , đường trung tuyến ứng với một cạnh bằng một phần hai cạnh ấy thì tam giác đó là tam giác vuông.
5. Hướng dẫn về nhà
-Về nhà học bài và làm bài tập SGK 
-Xem trước bài mới.
TT KIỂM TRA
BGH DUYỆT
././2009
LUYỆN TẬP
Tuần: 9
Tiết: 17
I. MỤC TIÊU:
Qua tiết học này học sinh cần nắm :
-Học sinh củng cố được các tính chất về hình thang cân, hình bình hành và hình chữ nhật.
-HS luyện tập được chứng minh một tứ giác là hình chữ nhật thông qua hình thang cân và hình bình hành và việc áp dụng các dấu hiệu nhận biết hình chữ nhật đã học trong tiết 16.
II. CÁC HOẠT ĐỘNG DẠY VÀ HỌC :
1. Ổn định lớp.
2. Kiểm tra bài cũ:
HS1 : Trong hình chữ nhật có những tính chất nào? Hãy vẽ hình và ghi gt/kl của định lý về đường chéo trong hình chữ nhật?
HS2 : nêu những dấu hiệu nhận biết hình chữ nhật ? Nếu có một tứ giác ABCD có một cặp cạnh song song và bằnh nhau và có Â = 900 thì tứ giác đó có là hình chữ nhật không ? vì sao ?
3/Tiến hành luyện tập : 
HOẠT ĐỘNG CỦA THẦYVÀ TRÒ
NỘI DUNG
BT 62/99 SGK
? Hãy phát biểu định nghĩa đường tròn?
? Hãy cho biết các phát biểu sau đúng hay sai?
Dựa vào hình 89 và 89 trang 99.
Có nhận xét gì về câu trả lời?
GV chốt lại theo định nghĩa đường tròn và hai định lý về hình chữ nhật áp dụng vào tam giác vuông .
BT 63 / 100 SGK
Trong hình 90 muốn tính độ dài x ta phải vẽ thêm đường nào? Tính như thế nào?
Hãy trình bày cách tính và tìm độ dài x ? 
Hãy nhận xét bài làm?
GV chốt lại bài làm.
BT 64/100 SGK
Hãy vẽ hình và ghi gt/kl của bài?
BF là phân giác của góc B và CF là phân giác của góc C thì tam giác BFC thế nào?
Góc F thế nào?
Tương tự các góc E và G thế nào?
Vậy hãy trình bày chứng minh?
HS thực hiện .
GV chốt lại bài làm.
BT 65/100 SGK
Hãy vẽ hình và ghi gt/kl của bài?
Theo hình vẽ và gt/kl thì muốn chứng minh EFGH là hình chữ nhật ta cần chứng minh gì?
Đề bài đã cho gì? Ta áp dụng tính chất gì để chứng minh?
Hãy trình bày chứng minh bài toán?
Có nhận xét gì về bài làm?
GV chốt lại bài làm.
Ngoài cách hứng minh hình bình hành như trên ta còn có thể chứng minh tứ giác có một cặp cạnh song song và bằng nhau rồi chứng minh thêm có 1 góc bằng 900 cũng suy ra được EFGH là hình chữ nhật.
BT 66/100 SGK 
Hãy nhìn hình vẽ 92 và trả lời yêu cầu của bài?
BT 62/99 SGK
HS trả lời.
HS nhận xét.
BT 63 / 100 SGK
	Hình 90 , kẽ BK ^ CD 
 Ta có : ABKD là HCN
 	Nên : AB = DK = 10cm
 AD = BK (1)
 Mà : DBKC Vg tại K
 Nên : BK2=BC2 – KC2
Hay : BK2 = 132 – 52 = 169 – 25 = 144 
ÞBK=12 cm. (2)
Từ 1 và 2 suy ra : AD = 12 cm.
BT 64/100 SGK
 CM : EFGH là HCN
	Ta có : 
 Mà 
 Nên : D BFC vg tại F.
 Hay 
Tương tự : ta có ; .
Suy ra : EFGH là hình chữ nhật (dấu hiệu 1)
BT 65/100 SGK
GT ABCD có AC ^ BD
EA = EB;FB = FC
GC = GD; DH = HA
KL EFGH là hình gì?
 Vì sao ?
Ta có : EF là đường trung bình của D ABC 
 ( EA = EB ; FB = FC)
Nên : EF // AC. (1)
Ta lại có : HG là đường trung bình của D ADC
 (GC = GD ; DH = HA)
nên : HG // AC . (2)
mặc khác :HE là đường trung bình của D ADB
 (EA = EB ; DH = HA)
Nên : HE // BD . (3)
Và : GF là đường trung bình của D DCB 
 (FB = FC ; GC = GD)
nên : GF // BD . (4)
Từ 1, 2, 3, 4 suy ra : EFGH là hình bình hành (5)
Mà : AC ^ BD (gt)
Nên : Ê = 900 (6)
Từ 5, 6 suy ra : EFGH là HCN (đpcm) 
BT 66/100 SGK 
HS trả lời và nhận xét câu trả lời.
4. Củng cố : 
vậy ta có thể dùng tính chất hình chữ nhật để suy luận trong quá trình chứng minh còn dấu hiệu nhận biết thì để chứng minh một tứ giác là hình chữ nhật.
Trong thực tế có thể áp dụng rất nhiều các tính chất của hình chữ nhật và tam giác vuông .
Hãy trình bày một số ứng dụng trong thực tế của hình chữ nhật và tam giác vuông ?
HS : phát biểu.
GV chốt lại các tính chất và dấu hiệu của hình chữ nhật cũng như việc ứng dụng trong thực tế của hình chữ nhật và tam giác vuông .
5. Hướng dẫn học ở nhà :
Tuần: 9
Tiết: 18
ĐƯỜNG THẲNG SONG SONG
VỚI MỘT ĐƯỜNG THẲNG CHO TRƯỚC
I / Mục tiêu :
Nhận biết được khái niệm khoảng cách giữa hai đường thẳng song song , định lý về các đưởng thẳng song song cách đều, tính chất của các điểm cách một đường thẳng cho trước một khoảng cách cho trước .
Biết vận dụng định lý về đường thẳng song song cách đều để chứng minh các đoạn thẳng bằng nhau. Biết cách chứng tỏ một điểm nằm trên một đường thẳng song song với một đường thẳng cho trước .
Vận dụng các kiến thức đã học vào việc vào giải toán và ứng dụng thực tế.
II / Phương tiện dạy học :
GV: Giáo án – SGK – Bảng phụ ghi đề bài – Thước thẳng – Phấn màu.
HS: Eke – Compa.
III / Hoạt động dạy học :
Ổn định : vs-ss
KTBC
HOẠT ĐỘNG CỦA GIÁO VIÊN VÀ HS
NỘI DUNG
GV: Phát biểu tính chất hình chữ nhật ? Vẽ hình và ghi gt/kl của tính chất về hai đường chéo trong hình chữ nhật?
GV: Nêu những dấu hiệu nhận biết tứ giác là hình bình hành?
Cho HS nhận xét bài làm của bạn. GV đánh giá 
HS1: 
3.Bài mới
1. Khoảng cách giữa hai đường thẳng song song : (12 phút)
GV . Hãy nhìn theo hình 93 và làm ?1 ?
ABKH là hình gì? Vì sao?
Vậy BK = ?
GV : Độ dài h gọi là khoảng cách giữa hai đường thẳng a và b.
Vậy khoảng cách giữa hai đường thẳng song song là gì?
GV chốt lại
2. Tính chất của các điểm cách đều một đường thẳng cho trước :
Hãy nhìn hình 94 và làm ?2.
Theo định nghĩavề khoảng cách nếu có cùng một khoảng cách và nằm cùng một nửa mp thì phải thế nào với đường thẳng cho trước?
Vậy nếu HA = h và MK = h mà A Ỵ a thì có gì?
Tương tự hãy lập luận cho điểm M’ Ỵ a’
Vậy tập hợp các điểm cách đều một đường thẳng cho trước một khoảng bằng h nằm trên mấy đường thế nào ?
GV chốt lại nội dung tính chất.
? Hãy làm ?3 .
đây là một bài toán tập hợp điểm(hay quỹ tích) ta phải dự đoán bằng cách lấy thêm một hoặc 2 điểm B , C khác A và cách A một khoảng là 2cm rối vẽ đường thẳng đi qua từ đó biết được nằm trên đường nào.
Hãy làm và dự đoán để trả lời.
3 . Đường thẳng song song cách đều:
GV cho học sinh nhìn hình 96 và giới tiệu định nghĩa đường thẳng song song cách đều.
Hãy là ?4 .
Vậy nếu có các đường thẳng song song cách đều cắt một đường thẳng thì chắn trên các đường thẳng đó thế nào?
Ngược lại thì thế nào?
GV chốt lại định lý .
Bài 44 SGK/45. 
2.Tính chất các điểm cách đều một đường thẳng cho trước : (12 phút) 
1. khoảng cách giữa hai đường thẳng song song
ĐN : Khoảng cách giữa hai đường thẳng song song là khoảng cách giữa một điểm tuỳ ý trên đường thẳng này đến đường thẳng kia.
2. Tính chất của các điểm cách đều một đường thẳng cho trước :
Tính chất :
Các điểm cách đường thẳng b một khoảng bằng h nằm trên hai đường thẳng song song với b và cách b một khoảng bằng h.
Nhận xét : SGK.
3 . Đường thẳng song song cách đều:
Định lý : SGK.
4.Luyện tập củng cố 
GV : Hãy nhắc lại các định nghĩa, tính chất, và nhận xét về khoảng cách giữa hai đường thẳng song song và các đường thẳng song song ?
	HS : Trả lời.
	GV : Hãy làm bài tập 67 SGK?
	HS Thực hiện.
	GV : Hãy nối các mệnh đề trong bài tập 69/103 SGK cho đúng ?
	HS : Thực hiện.
	GV : Chốt lại các nội dung và hai bài tập vừa giải.
Bài 46: SGK
Bài 48:SGK/46. GV đưa đề bài lên bảng phụ .
HS nhận xét bài giải của bạn.
Bài 46:
HS 
Bài 48:
HS cả lớp cùng giải.
1HS cho kết quả : 
5.Hướng dẫn học ở nhà ( phút)
 - Học các nội dung của bài vừa học .
Làm bài tập 68 trang 102 , 70 trang 103 SGK.
Xem trước các bài tập luyện tập tiền hành làm trong tiết luyện tập sau. 
TT KIỂM TRA
BGH DUYỆT
././2009

Tài liệu đính kèm:

  • docdai 8 moi soan day.doc