Đề thi môn Toán Khối 11 - Kỳ thi chọn học sinh giỏi tỉnh giải toán trên máy tính cầm tay - Sở GD&ĐT Thừa Thiên Huế

Đề thi môn Toán Khối 11 - Kỳ thi chọn học sinh giỏi tỉnh giải toán trên máy tính cầm tay - Sở GD&ĐT Thừa Thiên Huế

Bài 1. (5 điểm) Cho các hàm số .

Tính tổng

Tóm tắt cách giải: Kết quả:

Bài 2. (5 điểm) Trong đợt khảo sát chất lượng đầu năm, điểm của ba lớp 11A1, 11A2 , 11A3 được cho trong bảng sau:

Điểm 10 9 8 7 6 5 4 3

11A1 16 14 11 5 4 11 12 4

11A2 12 14 16 7 1 12 8 1

11A3 14 15 10 5 6 13 5 2

a) Tính điểm trung bình của mỗi lớp. Kết quả làm tròn đến chữ số lẻ thứ hai.

b) Tính phương sai và độ lệch chuẩn của bảng điểm mỗi lớp. Trong ba lớp, lớp nào học đều hơn?

 

doc 12 trang Người đăng haiha338 Lượt xem 295Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi môn Toán Khối 11 - Kỳ thi chọn học sinh giỏi tỉnh giải toán trên máy tính cầm tay - Sở GD&ĐT Thừa Thiên Huế", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Së Gi¸o dôc vµ §µo t¹o	Kú thi chän häc sinh giái tØnh
	Thõa Thiªn HuÕ	Gi¶i to¸n trªn m¸y tÝnh CÇM TAY 
	§Ò thi chÝnh thøc	Khèi 11 THPT - N¨m häc 2008-2009
Thời gian làm bài: 150 phút 
Ngày thi: 17/12/2008 - Đề thi gồm 5 trang
§iÓm toµn bµi thi
C¸c gi¸m kh¶o
(Hä, tªn vµ ch÷ ký)
Sè ph¸ch
(Do Chñ tÞch Héi ®ång thi ghi)
B»ng sè
B»ng ch÷
GK1
GK2
Qui định: Học sinh trình bày vắn tắt cách giải, công thức áp dụng, kết quả tính toán vào ô trống liền kề bài toán. Các kết quả tính gần đúng, nếu không có chỉ định cụ thể, được ngầm định chính xác tới 4 chữ số phần thập phân sau dấu phẩy 
Bài 1. (5 điểm) Cho các hàm số .
Tính tổng 
Tóm tắt cách giải:
Kết quả:
Bài 2. (5 điểm) Trong đợt khảo sát chất lượng đầu năm, điểm của ba lớp 11A1, 11A2 , 11A3 được cho trong bảng sau:
Điểm
10
9
8
7
6
5
4
3
11A1
16
14
11
5
4
11
12
4
11A2
12
14
16
7
1
12
8
1
11A3
14
15
10
5
6
13
5
2
Tính điểm trung bình của mỗi lớp. Kết quả làm tròn đến chữ số lẻ thứ hai.
Tính phương sai và độ lệch chuẩn của bảng điểm mỗi lớp. Trong ba lớp, lớp nào học đều hơn?
.
Tóm tắt cách giải:
Kết quả:
Bài 3. (5 điểm) Tính gần đúng nghiệm (theo đơn vị độ, phút, giây) của phương trình
Hướng dẫn: Đặt 
Tóm tắt cách giải:
Kết quả:
Bài 4. (5 điểm) Cho dãy hai số và có số hạng tổng quát là:
 và ( và )
 Xét dãy số ( và ).
Tính các giá trị chính xác của .
Lập các công thức truy hồi tính theo và ; tính theo và .
Từ 2 công thức truy hồi trên, viết quy trình bấm phím liên tục để tính và theo (). Ghi lại giá trị chính xác của: 
Tóm tắt cách giải:
Kết quả:
Bài 5. (5 điểm) Cho đa thức . 
Tìm các hệ số của hàm số bậc ba , biết rằng khi chia đa thức cho đa thức thì được đa thức dư là .
Với các giá trị vừa tìm được, tính chính xác giá trị của .
Tóm tắt cách giải:
Kết quả:
Bài 6. (5 điểm) Lãi suất của tiền gửi tiết kiệm của một số ngân hàng thời gian vừa qua liên tục thay đổi. Bạn Châu gửi số tiền ban đầu là 5 triệu đồng với lãi suất 0,7% tháng chưa đầy một năm, thì lãi suất tăng lên 1,15% tháng trong nửa năm tiếp theo và bạn Châu tiếp tục gửi; sau nửa năm đó lãi suất giảm xuống còn 0,9% tháng, bạn Châu tiếp tục gửi thêm một số tháng tròn nữa, khi rút tiền bạn Châu được cả vốn lẫn lãi là 5 747 478,359 đồng (chưa làm tròn). Hỏi bạn Châu đã gửi tiền tiết kiệm trong bao nhiêu tháng ? Nêu sơ lược quy trình bấm phím trên máy tính để giải.
Tóm tắt cách giải:
Kết quả:
Bài 7. (5 điểm)
Tìm biết với là số hoán vị của n phần tử, là số chỉnh hợp chập k của n phần tử, là số tổ hợp chập k của n phần tử.
Tìm hệ số của số hạng chứa trong khai triển nhị thức Niu-tơn của 
Tóm tắt cách giải:
Kết quả:
Bài 8. (5 điểm) 
	a) Tìm các số sao cho . Nêu quy trình bấm phím để được kết quả.
	b) Tìm số tự nhiên nhỏ nhất sao cho khi lập phương số đó ta được số tự nhiên có 3 chữ số cuối đều là chữ số 7 và 3 chữ số đầu cũng đều là chữ số 7: . Nêu sơ lược cách giải.
Tóm tắt cách giải:
Kết quả:
Bài 9. (5 điểm) Cho 3 đường thẳng . Hai đường thẳng và cắt nhau tại A; hai đường thẳng và cắt nhau tại B; hai đường thẳng và cắt nhau tại C.
a) Tìm tọa độ của các điểm A, B, C (viết dưới dạng phân số). 
b) Tính gần đúng hệ số góc của đường thẳng chứa tia phân giác trong góc A của tam giác ABC và tọa độ giao điểm D của tia phân giác đó với cạnh BC.
c) Tính gần đúng diện tích phần hình phẳng giữa đường tròn ngoại tiếp và đường tròn nội tiếp tam giác ABC. Kết quả làm tròn đến 2 chữ số lẻ thập phân. 
Tóm tắt cách giải:
Kết quả:
Bài 10. (5 điểm) Cho hình chóp ngũ giác đều S.ABCDE có cạnh đáy a = 6,74 cm, cạnh bên b = 9,44 cm.
Tính diện tích xung quanh và thể tích của hình chóp.
Tính gần đúng số đo (độ, phút, giây) của góc hợp bởi một trung đoạn và hình chiếu vuông góc của nó xuống mặt đáy.
Tính diện tích của thiết diện khi cắt hình chóp bởi mặt phẳng (P) chứa AB và phân giác của góc tạo bởi trung đoạn mặt bên SAB và hình chiếu vuông góc của nó xuống mặt đáy.
Tóm tắt cách giải:
Kết quả:
--------------HẾT-------------
Së Gi¸o dôc vµ §µo t¹o	Kú thi chän häc sinh giái tØnh
	Thõa Thiªn HuÕ	Gi¶i to¸n trªn m¸y tÝnh CÇM TAY 
	§Ò thi chÝnh thøc	Khèi 11 THPT - N¨m häc 2008-2009
ĐÁP ÁN VÀ BIỂU ĐIỂM 
Bài 1: 
0 SHIFT STO A 0 SHIFT STO B ALPHA A ALPHA = ALPHA A + 1 ALPHA : ALPHA B ALPHA = ALPHA B + ( ALPHA ( A ) SHIFT x3 ) ¸ ( 6 SHIFT ( ALPHA A ) + 3 ) Bấm liên tiếp = = = .... cho đến khi A nhận giá trị 100 thì dừng, đọc kết quả ở biến B: 
Bài 2: 
 Điểm trung bình của lớp là: ; Phương sai: và độ lệch chuẩn là: .
Điểm trung bình của lớp là: ; Phương sai: và độ lệch chuẩn là: .
Điểm trung bình của lớp là: ; Phương sai: và độ lệch chuẩn là: .
So các đọ lệch chuẩn, ta nhận thấy lớp 11A2 học đều hơn hai lớp kia.
2,0
1,0
1,0
1,0
5
Bài 3: 
Phương trình đã cho tương đương: (1)
Đặt ; 
2 3 ALPHA X ^ 4 - 4 3 ALPHA X x2 + 3 ALPHA X + 3 + 3 
CALC nhập vào (-) 2 = ta được 
CALC nhập vào -1 = ta được 
CALC nhập vào -0.5 = ta được 
(Có thể kiểm tra bằng chức năng Tabulate của máy Casio 570ES)
Dùng chức năng SOLVE với giá trị đầu ta tìm được một nghiệm 
Dùng chức năng SOLVE với giá trị đầu ta tìm được một nghiệm 
Giải phương trình , ta được các nghiệm:
; 
Bài 4:
.
Công thức truy hồi của un+2 có dạng: . Ta có hệ phương trình:
Do đó: 
Tương tự: 
Quy trình bấm phím: 
1 SHIFT STO A 10 SHIFT STO B 1SHIFT STO C 14 SHIFT STO D 2SHIFT STO X (Biến đếm)
ALPHA X ALPHA = ALPHA X + 1 ALPHA : ALPHA E ALPHA = 10 ALPHA B - 13 ALPHA A ALPHA : ALPHA A ALPHA = ALPHA B ALPHA : ALPHA B ALPHA = ALPHA E ALPHA : ALPHA F ALPHA = 14 ALPHA D - 29 ALPHA C ALPHA : ALPHA C ALPHA = ALPHA D ALPHA : ALPHA D ALPHA = ALPHA F ALPHA : ALPHA Y ALPHA = 2 ALPHA E + 3 ALPHA F = = = ... (giá trị của E ứng với un+2, của F ứng với vn+2, của Y ứng với zn+2). Ghi lại các giá trị như sau:
Bài 5: 
a) Các nghiệm của đa thức g(x) là: 
Theo giả thiết ta có: , suy ra:
Giải hệ phương trình ta được: 
Do đó: 
b) Cách giải: Nhập biểu thức , bấm phím CALC và nhập số 2008 = ta được số hiện ra trên màn hình: Ấn phím - nhập = được . Suy ra giá trị chính xác: .
Bài 6:
Gọi a là số tháng gửi với lãi suất 0,7% tháng, x là số tháng gửi với lãi suất 0,9% tháng, thì số tháng gửi tiết kiệm là: a + 6 + x. Khi đó, số tiền gửi cả vốn lẫn lãi là:
Quy trình bấm phím:
5000000 ´ 1.007 ^ ALPHA A ´ 1.0115 ^ 6 ´ 1.009 ^ ALPHA X - 5747478.359 ALPHA = 0 
 SHIFT SOLVE Nhập giá trị của A là 1 = Nhập giá trị đầu cho X là 1 = SHIFT SOLVE Cho kết quả X là số không nguyên.
Lặp lại quy trình với A nhập vào lần lượt là 2, 3, 4, 5, ...đến khi nhận được giá trị nguyên của X = 4 khi A = 5.
Vậy số tháng bạn Châu gửi tiết kiệm là: 5 + 6 + 4 = 15 tháng
Bài 7: 
33479022340 SHIFT STO A 2 SHIFT STO X ALPHA X ALPHA = ALPHA X + 1 ALPHA : 20 nCr ( 2 ALPHA X ) + ( 2 ALPHA X + 1 ) nPr ALPHA X - ( ALPHA X - 3 ) SHIFT x! - ALPHA X ^ 8 - ALPHA X ^ 5 - ALPHA A = = = ... đến khi biểu thức bằng 0, ứng với .
b) 
 Với . Suy ra hệ số của là .
Với . Suy ra hệ số của là .
Với . Suy ra hệ số của là .
Bài 8: 
a) Số cần tìm là: 3388 
Cách giải: 
.
Do đó: 
Nếu , điều này không xảy ra. 
Tương tự, nếu , điều này không xảy ra. 
Quy trình bấm máy:
100 ALPHA A + ALPHA X - 11 ( ALPHA A + 1 ) ( ALPHA X - 1 ) ALPHA = 0 
SHIFT SOLVE Nhập giá trị A là 1 = Nhập tiếp giá trị đầu cho X là 2 = cho kết quả X là số lẻ thập phân.
SHIFT SOLVE Nhập giá trị A là 2 = Nhập tiếp giá trị đầu cho X là 2 = cho kết quả X là số lẻ thập phân.
SHIFT SOLVE Nhập giá trị A là 3 = Nhập tiếp giá trị đầu cho X là 2 = cho kết quả X = 8;
tiếp tục quy trình cho đến khi A = 9.
Ta chỉ tìm được số: 3388.
 b) Hàng đơn vị chỉ có có chữ số cuối là 7. Với cac số chỉ có có 2 chữ số cuối đều là 7.
Với các chữ số chỉ có 7533 có 3 chữ số cuối đều là 7.
Ta có: ; , ; ...
Như vậy, để các số lập phương của nó có 3 số đuôi là chữ số 7 phải bắt đầu bởi các số: 91; 198; 426; 91x; 198x; 426x; .... (x = 0, 1, 2, ..., 9)
Thử các số:
Vậy số cần tìm là: n = 426753 và .
Bài 9: a) 
b) 
Góc giữa tia phân giác At và Ox là:
Suy ra: Hệ số góc của At là:
Bấm máy: 
 tan ( 0.5 ( SHIFT tan-1 3 + SHIFT tan-1 ( 2 ab/c 3 ) ) ) SHIFT STO A cho kết quả: 
+ Đường thẳng chứa tia phân giác At là đồ thị của hàm số: , At đi qua điểm nên .
+ Tọa độ giao điểm D của At và BC là nghiệm của hệ phương trình: . Giải hệ pt bằng cách bấm máy nhưng nhập hệ số a2 dùng ALPHA A và nhập hệ số c2 dùng (-) 3 ALPHA A + 4, ta được kết quả: 
c) Tính và gán cho biến A
Tính và gán cho biến B
Tính và gán cho biến C
 ( ALPHA A + ALPHA B + ALPHA C ) ¸ 2 SHIFT STO D (Nửa chu vi p)
Diện tích của tam giác ABC:
 ( ( ALPHA D ( ALPHA D - ( ALPHA A ) ( ALPHA D - ( ALPHA B ) ( ALPHA D ) ) SHIFT STO E 
Bán kính đường tròn ngoại tiếp tam giác ABC: :
ALPHA A ALPHA B ALPHA C ¸ 4 ¸ ALPHA E SHIFT STO F
Bán kính đường tròn nội tiếp tam giác ABC: .
Diện tích phần hình phẳng giữa đường tròn nội tiếp và đường tròn ngoại tiếp tam giác ABC là:
SHIFT ( ALPHA E x2 - ( ALPHA E ¸ ALPHA D ) x2 = Cho kết quả . 
Bài 10. 
Tính bán kính đường trong ngoại tiếp đáy và trung đoạn của hình chóp:
Chiều cao của hình chóp: 
 ( 9.44 x2 - ( 3.37 ¸ sin 36 ) x2 ) SHIFT STO A cho kết quả (h gán cho biến A)
Trung đoạn của hình chóp: 
. Bấm máy:
 ( ALPHA A x2 + ( 3.37 ¸ tan 36 ) x2 ) SHIFT STO B cho kết quả trung đoạn hình chóp: (d gán cho biến B).
Góc tạo bởi trung đoạn SI và hình chiếu của nó trên mặt đáy là: 
 SHIFT sin-1 ( ALPHA A ¸ ALPHA B ) SHIFT STO C Cho góc (Góc gán cho biến C).
Gọi 
SHIFT cos-1 ( ALPHA A ¸ ALPHA B ) + SHIFT tan-1 ( ( 3.37 ¸ sin 36 ) cos 72 ¸ ALPHA A ) SHIFT STO D cho kết quả ( gán cho biến D)
 ( ALPHA B sin ALPHA C ) ¸ sin ( 180 - ALPHA C - ALPHA D ) SHIFT STO E 
(Gán SJ cho biến E )
 ( ALPHA B sin ( ALPHA C ¸ 2 ) ) ¸ sin ( 180 - ALPHA C ¸ 2 ) - ALPHA D ) SHIFT STO F (Gán SK cho biến F)
 ( ALPHA B sin ALPHA D ) ¸ sin ( 180 - ALPHA C ¸ 2 - ALPHA D ) SHIFT STO X (Gán SK cho biến X)
 SHIFT sin-1 ( 3.37 ¸ 9.44 ¸ sin 36 ) + SHIFT cos-1 ( ALPHA A ¸ ALPHA B ) =
 ( ALPHA B sin Ans ) ¸ sin ( 180 - ALPHA C ¸ 2 - Ans ) SHIFT STO Y (Gán IP cho biến Y)
QN // CE //AB 
 ( 2 ´ 6.74 cos 36 ) ALPHA F ¸ ALPHA E SHIFT STO M (Gán QN cho biến M)
0.5 ALPHA Y ALPHA M + 0.5 ´ 6.74 ALPHA X = Cho diện tích thiết diện ABNPQ là . 

Tài liệu đính kèm:

  • docde_thi_mon_toan_khoi_11_ky_thi_chon_hoc_sinh_gioi_tinh_giai.doc