Bài 1: Rút gọn A= với a > 0 và a 1
Bài 2: Phân tích đa thức B = x4 + 6x3 + 7x2 – 6x + 1 thành nhân tử
Bài 3: Tìm m để phương trình có hai nghiệm và nghiệm này bằng bình phương nghiệm kia.
Bài 4: Xác định m để hệ sau có nghiệm duy nhất (x, y) với x, y là số nguyên
Bài 5: Giải phương trình
Bài 6: Cho đường thẳng (d): y = x + 2m – 3 gọi A, B lần lượt là giao điểm của d với Ox, Oy. Xác định m để SABO bằng 4.
Bài 7: Cho x, y, z > 0, x + y + z = 1.
Tìm giá trị lớn nhất của biểu thức C = ( xyz)(x+y)(y+z)(z+x)
Bài 8: Tính bán kính đường tròn nội tiếp ABC vuông ở A biết rằng đường
phân giác trong AD chia cạnh huyền thành 2 đoạn thẳng có độ dài 10 cm và 20 cm.
Bài 9: Cho đường tròn tâm O, tiếp tuyến đường tròn tại B, C cắt nhau ở A,
Sở giáo dục và đào tạo thanh hoá đề thi học sinh giỏi lớp 9 – bảng b Môn: Toán Thời gian: 150 phút (không kể thời gian giao đề) Bài 1: Rút gọn A= với a > 0 và a ạ1 Bài 2: Phân tích đa thức B = x4 + 6x3 + 7x2 – 6x + 1 thành nhân tử Bài 3: Tìm m để phương trình có hai nghiệm và nghiệm này bằng bình phương nghiệm kia. Bài 4: Xác định m để hệ sau có nghiệm duy nhất (x, y) với x, y là số nguyên Bài 5: Giải phương trình Bài 6: Cho đường thẳng (d): y = x + 2m – 3 gọi A, B lần lượt là giao điểm của d với Ox, Oy. Xác định m để SDABO bằng 4. Bài 7: Cho x, y, z > 0, x + y + z = 1. Tìm giá trị lớn nhất của biểu thức C = ( xyz)(x+y)(y+z)(z+x) Bài 8: Tính bán kính đường tròn nội tiếp DABC vuông ở A biết rằng đường phân giác trong AD chia cạnh huyền thành 2 đoạn thẳng có độ dài 10 cm và 20 cm. Bài 9: Cho đường tròn tâm O, tiếp tuyến đường tròn tại B, C cắt nhau ở A, = 600, M thuộc cung nhỏ BC, tiếp tuyến tại M cắt AB, AC tại D, E. Gọi giao điểm của OD, OE với BC lần lượt là I, K. Chứng minh rằng tứ giác IOCE nội tiếp. Bài 10: Chứng minh rằng trong một tứ diện bất kỳ tồn tại 3 cạnh cùng xuất phát từ một đỉnh mà một cạnh nhỏ hơn tổng hai cạnh kia. Tài liệu: Bài 1, 2, 5: Một số vấn đề phát triển Đại số 9 Bài 3, 6 : Đại số nâng cao lớp 9 Bài 7 : Bất đẳng thức – Phan Đức Chính Bài 8, 9, 10: Một số vấn đề phát triển Hình học 9.
Tài liệu đính kèm: