Đề thi chọn học sinh giỏi cấp cụm môn Toán Lớp 8

Đề thi chọn học sinh giỏi cấp cụm môn Toán Lớp 8

A. Trắc nghiệm: Hãy chọn chữ cái A, B, C, D trớc kết quả đúng:

Câu 1: M = x2 + y2 + z2

A. M xy + yz + xz C. M > xy + yz + xz

B. M xy + yz + xz D. M 2 ( xy + yz + xz )

Câu 2: Nếu x + y = 2 thì x.y:

A. Lớn hơn 1 C. Không bé hơn 1

B. Không lớn hơn 1 D. Bé hơn 1

Câu 3: Cho N = x +

A. N 2 B. N > 2 C. N - 2 D. Một kết quả khác.

Câu 4: Tập nghiệm của phơng trình ( x2 – 6x + 9 )2 – 15 x2 + 90 x – 151 = 0 gồm:

A. Bốn phần tử C. Tập rỗng

B. Hai phần tử D. Một phần tử

Câu 5: Cho hình bình hành ABCD có BD = 12, lấy E thuộc CD sao cho

ED = DC, AE cắt BD ở K. Độ dài DK là:

A. 6 B. 4 C. 3,5 D. 3.

Câu 6: Cho hình bình hành ABCD, AB = 9, AD = 5. Tia phân giác của góc A cắt BC tại E. Độ dài EC là:

A. 6,5 C. 10

B. 6 D. Một kết quả khác

Câu 7: Cho x > y > 0 và x – y = 7 , xy = 60 thì giá trị của x2 + y2 là

A. – 119 B. 169 C. 130 D. 79

Câu 8: Đa thức d của phép chia đa thức :

P(x) = x + x3 + x9 + x27 + x 81 cho đa thức : Q(x) = x2 – 1 là:

A. R(x) = 5x B. R(x) = - 5x C. R(x) = 5x +1 D. R(x) = 5x – 1

 

doc 3 trang Người đăng haiha338 Lượt xem 694Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi chọn học sinh giỏi cấp cụm môn Toán Lớp 8", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề thi chọn học sinh giỏi cấp cụm
Môn : Toán 8
 Thời gian : 120 phút ( Không kể thời gian giao đề).
A. Trắc nghiệm: Hãy chọn chữ cái A, B, C, D trước kết quả đúng:
Câu 1: M = x2 + y2 + z2
M xy + yz + xz	C. M > xy + yz + xz
M xy + yz + xz	D. M 2 ( xy + yz + xz )
Câu 2: Nếu x + y = 2 thì x.y:
Lớn hơn 1	C. Không bé hơn 1
Không lớn hơn 1	D. Bé hơn 1
Câu 3: Cho N = x + 
N 2	B. N > 2	 C. N - 2	D. Một kết quả khác.
Câu 4: Tập nghiệm của phương trình ( x2 – 6x + 9 )2 – 15 x2 + 90 x – 151 = 0 gồm:
Bốn phần tử	C. Tập rỗng
Hai phần tử	D. Một phần tử
Câu 5: Cho hình bình hành ABCD có BD = 12, lấy E thuộc CD sao cho 
ED = DC, AE cắt BD ở K. Độ dài DK là:
6 	B. 4	C. 3,5	D. 3.
Câu 6: Cho hình bình hành ABCD, AB = 9, AD = 5. Tia phân giác của góc A cắt BC tại E. Độ dài EC là:
6,5	C. 10
6	D. Một kết quả khác
Câu 7: Cho x > y > 0 và x – y = 7 , xy = 60 thì giá trị của x2 + y2 là
– 119	B. 169	C. 130	D. 79
Câu 8: Đa thức dư của phép chia đa thức :
P(x) = x + x3 + x9 + x27 + x 81 cho đa thức : Q(x) = x2 – 1 là:
A. R(x) = 5x 	B. R(x) = - 5x	C. R(x) = 5x +1	D. R(x) = 5x – 1	
B. Tự luận:
Câu 1: Cho biểu thức: P = : ( - + )
Rút gọn P
Tìm x để P < 1
Tìm giá trị nhỏ nhất của P khi x > 1
Câu 2: Kẻ đường cao BD và CE của tam giác ABC, các đường cao DF và GE của tam giác ADE
Chứng minh: AD. AE = AB . AG = AC . AF
Chứng minh: FG // BC
Câu 3: Cho tam giác ABC ( AC > AB ) lấy các điểm D , E tuỳ ý thứ tự nằm trên AB, AC sao cho BD = CE. Gọi K là giao điểm của DE, BC. Chứng minh tỉ số không phụ thuộc vào cách chọn điểm D và E.
Câu 4: Cho a, b, c > 0 chứng minh:
 + + 
Đáp án môn Toán 8
Trắc nghiệm: 6 điểm ( Mỗi câu đúng 0.75 )
Câu
1
2
3
4
5
6
7
8
Kết quả
A
B
D
B
D
B
B
A
Tự luận:
Câu 1: 6 điểm
a. P = : ( - + ) 	 0.25
 = : ( + + ) 	0.25
 = : 	0.5
 = : 	0. 25
 = = 	0.5
 Vậy P = 
b. P < 1 < 1 với mọi x ≠ ±1; x ≠ 0	0.5
 - 1 < 0	0.25
 < 0	0.25
Mà x2 – x + 1 = ( x - )2 + > 0	0.25
P < 1 x – 1 < 0 x < 1. Kết hợp với điều kiện ta có:
P < 1 x ≠ -1; x ≠ 0.	0.25
c. P = x – 1 + + 2	0.25
x > 1 => x – 1 > 0 => x – 1 + 2	0.5
 => P 4 . 
Dấu “=” xảy ra x = 2 ( Thoả mãn ) 	1.0
Vậy, minP = 4 x = 2.	0.25
Câu 2: 4 điểm
a. (2 đ)
BD // EG => 
=> AE.AD = AB.AG
T2 
=> AF.AD =AE.AD
=> AE.AD = AB.AG = AF.AC
( 2 đ) AB.AG = AF.AC
=> => FG // ED
Câu 3: (2 đ)
Vẽ DG // AC ( G thuộc BC)
ta có: => 
mà: => không đổi
Câu 4: ( 2 đ) Ta có: a2 + b2 2ab
 a2 + b2 - ab ab
 a3 + b3 + abc = (a + b) (a2 + b2 – ab) + abc (a + b) ab + abc 
 ( a + b > 0)
 a3 + b3 + abc ab(a + b + c) Hai vế dương ta có
tương tự: 
++ 
++
Dấu bằng xảy ra a = b = c

Tài liệu đính kèm:

  • docde_thi_chon_hoc_sinh_gioi_cap_cum_mon_toan_lop_8.doc