Bài tập ôn tập Đại số Lớp 8 học kì II

Bài tập ôn tập Đại số Lớp 8 học kì II

1. Định nghĩa:

 Phương trình bậc nhất một ẩn là phương trình có dạng ax + b = 0 , với a và b là hai số đã cho và a 0 , Ví dụ : 2x – 1 = 0 (a = 2; b = - 1)

2.Cách giải phương trình bậc nhất một ẩn:

Bước 1: Chuyển hạng tử tự do về vế phải.

Bước 2: Chia hai vế cho hệ số của ẩn

( Chú y: Khi chuyển vế hạng tử thì phải đổi dấu số hạng đó)

CÁCH GIẢI:

Bước 1 : Quy đồng mẫu rồi khử mẫu hai vế

Bước 2:Bỏ ngoặc bằng cách nhân đa thức; hoặc dùng quy tắc dấu ngoặc.

Bước 3:Chuyển vế: Chuyển các hạng tử chứa ẩn qua vế trái; các hạng tử tự do qua vế phải.( Chú y: Khi chuyển vế hạng tử thì phải đổi dấu số hạng đó)

Bước4: Thu gọn bằng cách cộng trừ các hạng tử đồng dạng

Bước 5: Chia hai vế cho hệ số của ẩn

 

doc 6 trang Người đăng tuvy2007 Lượt xem 713Lượt tải 1 Download
Bạn đang xem tài liệu "Bài tập ôn tập Đại số Lớp 8 học kì II", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
A. PHƯƠNG TRÌNH
I . ph­¬ng tr×nh bËc nhÊt mét Èn:
1. Định nghĩa:
 Phương trình bậc nhất một ẩn là phương trình có dạng ax + b = 0 , với a và b là hai số đã cho và a 0 , Ví dụ : 2x – 1 = 0 (a = 2; b = - 1)
2.Cách giải phương trình bậc nhất một ẩn:
Bước 1: Chuyển hạng tử tự do về vế phải.
Bước 2: Chia hai vế cho hệ số của ẩn
( Chú y:ù Khi chuyển vế hạng tử thì phải đổi dấu số hạng đó)
II. Ph­¬ng tr×nh ®­a vỊ ph­¬ng tr×nh bËc nhÊt:
CÁCH GIẢI:
Bước 1 : Quy đồng mẫu rồi khử mẫu hai vế
Bước 2:Bỏ ngoặc bằng cách nhân đa thức; hoặc dùng quy tắc dấu ngoặc.
Bước 3:Chuyển vế: Chuyển các hạng tử chứa ẩn qua vế trái; các hạng tử tự do qua vế phải.( Chú y:ù Khi chuyển vế hạng tử thì phải đổi dấu số hạng đó)
Bước4: Thu gọn bằng cách cộng trừ các hạng tử đồng dạng
Bước 5: Chia hai vế cho hệ số của ẩn
BÀI TẬP LUYỆN TẬP:
Bµi 1 Giải phương trình
3x-2 = 2x – 3 
2x+3 = 5x + 9 
5-2x = 7
10x + 3 -5x = 4x +12
11x + 42 -2x = 100 -9x -22 
2x –(3 -5x) = 4(x+3)
x(x+2) = x(x+3)
2(x-3)+5x(x-1) =5x2 
Bài 2: Giải phương trình
a/ 	c/ 	
 b/ 	d/ 	
III. ph­¬ng tr×nh tÝch vµ c¸ch gi¶i:
ph­¬ng tr×nh tÝch: 
 Phương trình tích: Có dạng: A(x).B(x)C(x).D(x) = 0 Trong đó A(x).B(x)C(x).D(x) là các nhân tử.
VÝ dơ: Gi¶i ph­¬ng tr×nh:
 2x + 1 = 0 hoặc 3x – 2 = 0 Suy ra hoặc 
VËy:
bµi tËp luyƯn tËp Gi¶i c¸c ph­¬ng tr×nh sau
1/ (3,5-7x)(0,1x + 2,3) = 0 2/ (x +)(x-) = 0 9/ x2 – 3x + 2 = 0
3/ (3x-1)(2x-3)(2x-3)(x+5) = 0 4/ x2 – x = 0 10/ - x2 + 5x – 6 = 0
5/ (2x -1)2 + (2- x)(2x - 1) = 0 6/ 3x-15 = 2x(x-5) 
7/ (x+1)(x+4) =(2-x)(x+2) 8/ (x + 2)(3-4x) = x2 + 4x + 4 
IV.ph­¬ng tr×nh chøa Èn ë mÉu:
C¸ch gi¶i: 
Bước 1 :Ph©n tÝch mÉu thµnh nh©n tư
Bước 2: Tìm ĐKXĐ của phương trình 
Tìm ĐKXĐ của phương trình :Là tìm tất cả các giá trị làm cho các mẫu khác 0 
( hoặc tìm các giá trị làm cho mẫu bằng 0 rồi loại trừ các giá trị đó đi)
Bước 3:Quy đồng mẫu rồi khử mẫu hai vế .
Bước 4: Bỏ ngoặc.
Bước 5: Chuyển vế (đổi dấu)
Bươc 6: Thu gọn. 
+ Sau khi thu gọn mà ta được: Phương trình bậc nhất thì giải theo quy tắc giải phương trình bậc nhất
+ Sau khi thu gọn mà ta được: Phương trình bậc hai thì ta chuyển tất cảù hạng tử qua vế trái; phân tích đa thức vế trái thành nhân tử rồi giải theo quy tắc giải phương trình tích.
Bước 4: Đối chiếu ĐKXĐ để trả lời. 
VÝ dơ: Œ/ Gi¶i ph­¬ngh tr×nh: 
Gi¶i:
 (1)
§KX§: 
MC: 
Ph­¬ng tr×nh (1) 
 (tm®k) V©y nghiƯm cđa ph­¬ng tr×nh lµ x = 8.
/ Gi¶i ph­¬ngh tr×nh: 
Gi¶i :
 (2)
§KX§:
MC: 
Ph­¬ng tr×nh (2) 
VËy ph­¬ng tr×nh cã nghiƯm x =1; x = 5.
bµi tËp luyƯn tËp 
Bµi 1: Gi¶i c¸c ph­¬ng tr×nh sau: 
a)	 b) 	
c) 	 d) 
Bµi 2: Gi¶i c¸c ph­¬ng tr×nh sau: 
 a) 	 b) 
 c) 	 d) 
V.ph­¬ng tr×nh chøa dÊu gi¸ trÞ tuyƯt ®èi:
Cần nhớ : Khi a 0 thì 
 Khi a < 0 thì 
bµi tËp luyƯn tËp 
Gi¸i ph­¬ng tr×nh:
a/ b/ 
B. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH.
PHƯƠNG PHÁP
Bước1: Chọn ẩn số:
+ Đọc thật kĩ bài toán để tìm được các đại lượng, các đối tượng tham gia trong bài toán
+ Tìm các giá trị của các đại lượng đã biết và chưa biết 
+ Tìm mối quan hệä giữa các giá trị chưa biết của các đại lượng
+ Chọn một giá trị chưa biết làm ẩn (thường là giá trị bài toán yêu cầu tìm) làm ẩn số ; 
đặt điều kiện cho ẩn 
Bước2: Lập phương trình
+ Thông qua các mối quan hệ nêu trên để biểu diễn các đại lượng chưa biết khác qua ẩn
Bước3: Giải phương trình
Giải phương trình , chọn nghiệm và kết luận 
bµi tËp luyƯn tËp 
DẠNG 1:
 BÀI TOÁN VỀ SỐ VÀ CHỮ SỐ.
Bài 1:Một số tự nhiên có hai chữ số. Chữ số hàng đơn vị gấp hai lần chữ số hàng chục .Nếu thêm chữ số 1 xen vào giữa hai chữ số ấy thì được một số mới lớn hơn số ban đầu là 370 .Tìm số ban đầu . 
Số ban đầu là 48 
Bài 2: Mẫu số của một phân số lớn hơn tử số của nó là 5 .Nếu tăng cả tử mà mẫu của nó thêm 5 đơn vị thì được phân số mới bằng phân số .Tìm phân số ban đầu .
Lúc đầu 
Lúc tăng 
tử số 
mẫu số 
Phương trình : Ph©n sè lµ 5/10.
Bài 3: Một phân số có tử số bé hơn mẫu số là 11. Nếu tăng tử số lên 3 đơn vị và giảm mẫu số đi 4 đơn vị thì được một phân số bằng . Tìm phân số ban đầu.
DẠNG 2: 
BÀI TOÁN CHUYỂN ĐỘNG.
GHI NHỚ: 
Bài toán chuyển động liên quan đến công thức liên hệ giữa quãng đường (s), vận tốc (v) và thời gian (t) 
	Bài 4:Một người đi xe máy từ A đến B với vận tốc trung bình 30km/h. Khi đến B, người đĩ nghỉ 20 phút rồi quay trở về A với vận tốc trung bình 25km/h. Tính quãng đường AB, biết rằng thời gian cả đi lẫn về là 5 giờ 50 phút.
HD: Gọi độ dài quãng đường AB là x km (x > 0). 
	Ta cĩ phương trình: . Giải ra ta được: x = 75 (km)
Bài 5: Một người đi xe đạp từ A đến B với vận tốc 15 km / h.Lucù về người đó đi với vận tốc 12km / HS nên thời gian về lâu hơn thời gian đi là 45 phút .Tính quảng đường AB ?
S(km)
V(km/h)
t (h)
Đi
Về
§S: AB dài 45 km 
Bài 6 : Lúc 6 giờ sáng , một xe máy khởi hành từ A để đến B .Sau đó 1 giờ , một ôtô cũng xuất phát từ A đến B với vận tốc trung bình lớn hớn vận tốc trung bình của xe máy 20km/h .Cả hai xe đến B đồng thời vào lúc 9h30’ sáng cùng nàgy .Tính độ dài quảng đường AB và vận tốc trung bình của xe máy .
S
V 
t(h)
Xe máy 
3,5x
x
3,5
Oâ tô 
2,5(x+20)
x+20
2,5
Vận tốc của xe máy là 50(km/h)
Vận tốc của ôtô là 50 + 20 = 70 (km/h)
Bài 7 :Một ca nô xuôi dòng từ bến A đến bến B mất 6 giờ và ngược dòng từ bến B về bến A mất 7 giờ .Tính khoảng cách giữa hai bến A và B , biết rằng vận tốc của dòng nước là 2km / h .
Ca nô
S(km)
V (km/h)
t(h)
N­íc yªn lỈng
x
Xuôi dòng
 Ngược dòng
Phương trình :6(x+2) = 7(x-2)
	Bài 8: Hai canơ cùng khởi hành một lúc và chạy từ bến A đến bến B. Canơ I chạy với vận tốc 20km/h, canơ II chạy với vận tốc 24km/h. Trên đường đi, canơ II dừng lại 40 phút, sau đĩ tiếp tục chạy với vận tốc như cũ. Tính chiều dài quãng sơng AB, biết rằng hai canơ đến bến B cùng 1 lúc.
HD: Gọi chiều dài quãng sơng AB là x km (x > 0)
	Ta cĩ phương trình: . Giải ra ta được: x = 80 (km)
DẠNG 3:
BÀI TOÁN NĂNG SUẤT.
Bài 9:Một tổ sản xuất theo kế hoạch mỗi ngày phải sản suất 50 sản phẩm .Khi thực hiện , mỗi ngày tổ đã sản xuất được 57 sản phẩm .Do đó tổ đã hoàn thành trước kế hoạch 1 ngày và còn vượt mức 13 sản phẩm .Hỏi theo kế hoạch , tổ phải sản xuất bao nhiêu sản phẩm ?
Năng suất 1 ngày ( sản phẩm /ngày )
Số ngày (ngày)
Số sản phẩm (sản phẩm )
Kế hoạch
x
Thực hiện
Phương trình : - = 1 
Bài 10: Một bác thợ theo kế hoạch mỗi ngày làm 10 sản phẩm .Do cải tiến kỹ thuật mỗi ngày bác đã làm được 14 sản phẩm .Vì thế bác đã hoàn thành kế hoạch trước 2 ngày và còn vượt mức dự định 12 sản phẩm .Tính số sản phẩm bác thợ phải làm theo kế hoạch ?
Năng suất 1 ngày ( sản phẩm /ngày )
Số ngày (ngày)
Số sản phẩm (sản phẩm )
Kế hoạch
x
Thực hiện
DẠNG 4:
DẠNG TOÁN LIÊN QUAN ĐẾN %
	Bài 11: Học kỳ I số học sinh giỏi của lớp 8A bằng số học sinh của cả lớp. Sang học kỳ II có thêm 3 bạn nữa phấn đấu trở thành học sinh giỏi nữa, do đó số học sinh giỏi bằng 20% số học sinh của cả lớp. Hỏi lớp 8A có bao nhiêu học sinh.
	Bài 12: Năm ngoái tổng số dân của hai tỉnh A và B là 4 triệu người. Năm nay số dân của tỉnh A tăng thêm 1,1%, còn số dân tỉnh B tăng thêm 1,2%. Tuy vậy số dân tỉnh A năm nay vẫn nhiều hơn số dân tỉnh B là 807200 người. Tính số dân năm ngoái của mỗi tỉnh.
DẠNG 5:
MỘT SỐ BÀI TOÁN KHÁC
Bài 13: Hai thư viện có cả thảy 20000 cuốn sách .Nếu chuyển từ thư viện thứ nhất sang thư viện thứ hai 2000 cuốn sách thì số sách của hai thư viện bằng nhau .Tính số sách lúc đầu ở mỗi thư viện .
Lúc đầu 
Lúc chuyển 
Thư viện I
x
X - 2000
Thư viện II
20000 -x 
20000 – x + 2000
§S: số số sách lúc đầu ở thư viện thứ nhất 12000 
 số sách lúc đầu ở thư viện thứ hai la ø8000
Bài 14:Số lúa ở kho thứ nhất gấp đôi số lúa ở kho thứ hai .Nếu bớt ở kho thứ nhất đi 750 tạ và thêm vào kho thứ hai 350 tạ thì số lúa ở trong hai kho sẽ bằng nhau .Tính xem lúc đầu mỗi kho có bao nhiêu lúa .
Lúa 
Lúc đầu 
Lúc thêm , bớt 
Kho I
Kho II
§S: Lúc đầu Kho I có 2200 tạ Kho II có : 1100tạ 
Bài 15:Hai thùng đựng dầu: thùng thứ nhất có 120 lít, thùng thứ hai có 90 lít. Sau khi lấy ra ở thùng thứ nhất một lượng dầu gấp 3 lần lượng dầu lấy ra ở thùng thứ hai thì lượng dầu còn lại trong thùng thứ hai gấp đôi lượng dầu còn lại trong thùng thứ nhất. Hỏi đã lấy ra bao nhiêu lượng dầu ở mỗi thùng.
	Bài 16:Có hai vườn cây đang ươm cùng một loại cây giống. Tổng số cây giống trong hai vườn là 450 cây. Nếu chuyển 50 cây giống từ vườn thứ nhất sang vườn thứ hai thì số cây giống ở vườn thứ hai sẽ gấp hai lần số cây giống ở vườn thứ nhất. Hỏi mỗi vườn cây có bao nhiêu cây giống.
Bài 17:Năm nay , tuổi bố gấp 4 lần tuổi Hoàng .Nếu 5 năm nữa thì tuổi bố gấp 3 lần tuổi Hoàng ,Hỏi năm nay Hoàng bao nhiêu tuổi ?
Năm nay 
5 năm sau 
Tuổi Hoàng 
Tuổi Bố 
Phương trình :4x+5 = 3(x+5)
C.BÊt ph­¬ng tr×nh
¤Bất phương trình dạng ax + b 0, ax + b 0, ax + b 0) với a và b là hai số đã cho và a 0 , được gọi làbất phương trình bậc nhất một ẩn .
Ví dụ : 2x – 3 > 0; 5x – 8 0 ; 3x + 1 < 0; 2x – 5 0
¤ Cách giải bất phương trình bậc nhất một ẩn :
Tương tự như cách giải phương trình đưa về bậc nhất.råi biĨu diƠn nghiƯm trªn trơc sè.
¤Chú ý : 
Khi chuyển vế hạngtử thì phải đổi dấu số hạng đó.
Khi chia cả hai về của bất phương trình cho số âm phải đổi chiều bất phương trình
bµi tËp luyƯn tËp 
Bµi 1: 
a/ 2x+2 > 4 b/ 3x +2 > -5 c/ 10- 2x > 2 d/ 1- 2x < 3
Bµi 2:
a/ 10x + 3 – 5x 14x +12 b/ (3x-1)< 2x + 4 
c/ 4x – 8 3(2x-1) – 2x + 1 d/ x2 – x(x+2) > 3x – 1 
e/ e/ 

Tài liệu đính kèm:

  • docBAI TAP DAI SO LOP 8_KY II.doc