I) Mục tiêu:
1/ Kiến thức:
- HS nắm vững các định nghĩa về tứ giác, tứ giác lồi, các khái niệm : Hai đỉnh kề nhau, hai cạnh kề nhau, hai cạnh đối nhau, điểm trong, điểm ngoài của tứ giác & các tính chất của tứ giác. Tổng bốn góc của tứ giác là 3600.
2/ Kĩ năng:
- HS tính được số đo của một góc khi biết ba góc còn lại, vẽ được tứ giác khi biết số đo 4 cạnh & 1 đường chéo.
3/ Thái độ:
- Rèn tư duy suy luận ra được 4 góc ngoài của tứ giác là 3600
II) Chuẩn bị:
- GV: Com pa, thước, 2 tranh vẽ hình 1 ( SGK) Hình 5 (SGK) bảng phụ
- HS: Thước, com pa, bảng nhóm
Tuần 1 (Từ ngày 23/8 đến ngày 28/8/2010) CHƯƠNG I TỨ G IÁC Tiết 1: TỨ GIÁC NS:20/08/2010 I) Mục tiêu: 1/ Kiến thức: - HS nắm vững các định nghĩa về tứ giác, tứ giác lồi, các khái niệm : Hai đỉnh kề nhau, hai cạnh kề nhau, hai cạnh đối nhau, điểm trong, điểm ngoài của tứ giác & các tính chất của tứ giác. Tổng bốn góc của tứ giác là 3600. 2/ Kĩ năng: - HS tính được số đo của một góc khi biết ba góc còn lại, vẽ được tứ giác khi biết số đo 4 cạnh & 1 đường chéo. 3/ Thái độ: - Rèn tư duy suy luận ra được 4 góc ngoài của tứ giác là 3600 II) Chuẩn bị: - GV: Com pa, thước, 2 tranh vẽ hình 1 ( SGK) Hình 5 (SGK) bảng phụ - HS: Thước, com pa, bảng nhóm III) Hoạt động dạy học: Hoạt động của GV Hoạt động của HS * Hoạt động 1: Hình thành định nghĩa (10’) - GV: Kiểm tra đồ dùng học tập của học sinh và nhắc nhở dụng cụ học tập cần thiết: thước kẻ, ê ke, com pa, thước đo góc, - GV: treo tranh (bảng phụ) - HS: Quan sát hình và trả lời - Các HS khác nhận xét -GV: Trong các hình trên mỗi hình gồm 4 đoạn thẳng: AB, BC, CD và DA. Hình nào có 2 đoạn thẳng cùng nằm trên một ĐT - Ta có H1 là tứ giác, hình 2 không phải là tứ giác. Vậy tứ giác là gì ? - GV: Chốt lại và ghi định nghĩa - GV: giải thích : 4 đoạn thẳng AB, BC, CD, DA trong đó đoạn đầu của đoạn thẳng thứ nhất trùng với điểm cuối của đoạn thẳng thứ 4. + 4 đoạn thẳng AB, BC, CD, DA trong đó không có bất cứ 2 đoạn thẳng nào cùng nằm trên 1 đường thẳng. + Cách đọc tên tứ giác phải đọc hoặc viết theo thứ tự các đoạn thẳng như: ABCD, BCDA, ADBC +Các điểm A, B, C, D gọi là các đỉnh của tứ giác. + Các đoạn thẳng AB, BC, CD, DA gọi là các cạnh của tứ giác. * Hoạt động 2: Định nghĩa tứ giác lồi (7’) - GV: Hãy lấy mép thước kẻ lần lượt đặt trùng lên mỗi cạch của tứ giác ở H1 rồi quan sát - H1(a) luôn có hiện tượng gì xảy ra ? - H1(b) (c) có hiện tượng gì xảy ra ? - GV: Bất cứ đương thẳng nào chứa 1 cạnh của hình H1(a) cũng không phân chia tứ giác thành 2 phần nằm ở 2 nửa mặt phẳng có bờ là đường thẳng đó gọi là tứ giác lồi. - Vậy tứ giác lồi là tứ giác như thế nào ? + Trường hợp H1(b) và H1 (c) không phải là tứ giác lồi * Hoạt động 3: Nêu các khái niệm cạnh kề đối, góc kề, đối điểm trong , ngoài (8’) GV: Vẽ H3 và giải thích khái niệm: . B M A . P D C * Hoạt động 4: Tính tổng các góc trong 1 tứ giác ( 13’) GV: Không cần tính số mỗi góc hãy tính tổng 4 góc + + + = ? (độ) - Gv: ( gợi ý hỏi) + Tổng 3 góc của 1 là bao nhiêu độ? + Muốn tính tổng + + + = ? (độ) ( mà không cần đo từng góc ) ta làm ntn? + GV chốt lại cách làm: - Chia tứ giác thành 2 có cạnh là đường chéo - Tổng 4 góc tứ giác = tổng các góc của 2 ABC và ADC Tổng các góc của tứ giác bằng 3600 - GV: Vẽ hình và ghi bảng 1) Định nghĩa: - Hình 2 có 2 đoạn thẳng BC và CD cùng nằm trên 1 đường thẳng. * Định nghĩa: Tứ giác ABCD là hình gồm 4 đoạn thẳng AB, BC, CD, DA trong đó bất kỳ 2 đoạn thẳng nào cũng không cùng nằm trên một đường thẳng. * Tên tứ giác phải được đọc hoặc viết theo thứ tự của các đỉnh. *Định nghĩa tứ giác lồi * Định nghĩa: (SGK) * Chú ý: Khi nói đến 1 tứ giác mà không giải thích gì thêm ta hiểu đó là tứ giác lồi + Hai đỉnh thuộc cùng một cạnh gọi là hai đỉnh kề nhau + hai đỉnh không kề nhau gọi là hai đỉnh đối nhau + Hai cạnh cùng xuất phát từ một đỉnh gọi là hai cạnh kề nhau + Hai cạnh không kề nhau gọi là hai cạnh đối nhau - Điểm nằm trong M, P điểm nằm ngoài N, Q * Chú ý: Khi nói đến 1 tứ giác mà không giải thích gì thêm ta hiểu đó là tứ giác lồi + Hai đỉnh thuộc cùng một cạnh gọi là hai đỉnh kề nhau + hai đỉnh không kề nhau gọi là hai đỉnh đối nhau + Hai cạnh cùng xuất phát từ một đỉnh gọi là hai cạnh kề nhau + Hai cạnh không kề nhau gọi là hai cạnh đối nhau - Điểm nằm trong M, P điểm nằm ngoài N, Q 2/ Tổng các góc của một tứ giác ( HD4) Â1 + + 1 = 1800 2 + + 2 = 1800 (1+2)++(1+2) + = 3600 Hay + + + = 3600 * Định lý: ( SGK ) IV) Củng cố: ( 6’) - GV cho HS làm bài tập trang 66. Hãy tính các góc còn lại V) Hướng dẫn HS học tập ở nhà: ( 1’ ) - Nêu sự khác nhau giữa tứ giác lồi & tứ giác không phải là tứ giác lồi ? - Làm các bài tập : 2, 3, 4 (SGK) * Chú ý : T/c các đường phân giác của tam giác cân * HD bài 4: Dùng com pa và thước thẳng chia khoảng cách vẽ tam giác có 1 cạnh là đường chéo trước rồi vẽ 2 cạch còn lại Tiết 2: HÌNH THANG NS:20/08/2010 I) Mục tiêu: 1/ Kiến thức: - HS nắm vững các định nghĩa về hình thang , hình thang vuông các khái niệm: cạnh bên, đáy , đường cao của hình thang 2/ Kĩ năng: - Nhận biết hình thang hình thang vuông, tính được các góc còn lại của hình thang khi biết một số yếu tố về góc. 3/ Thái độ: - Rèn tư duy suy luận, sáng tạo II) Chuẩn bị: - GV: Com pa, thước, 2 tranh vẽ hình 1 ( SGK) Hình 5 (SGK) bảng phụ - HS: Thước, com pa, bảng nhóm III) Hoạt động dạy học: Hoạt động của GV Hoạt động của HS * Hoạt động 1: ( Giới thiệu hình thang) - GV: Tứ giác có tính chất chung là + Tổng 4 góc trong là 3600 + Tổng 4 góc ngoài là 3600 Ta sẽ nghiên cứu sâu hơn về tứ giác. - GV: đưa ra hình ảnh cái thang & hỏi + Hình trên mô tả cái gì ? + Mỗi bậc của thang là một tứ giác, các tứ giác đó có đặc điểm gì ? và giống nhau ở điểm nào ? - GV: Chốt lại + Các tứ giác đó đều có 2 cạnh đối // Ta gọi đó là hình thang ta sẽ nghiên cứu trong bài hôm nay. * Hoạt động 2: Định nghĩa hình thang - GV: Em hãy nêu định nghĩa thế nào là hình thang - GV: Tứ giác ở hình 13 có phải là hình thang không ? vì sao ? - GV: nêu cách vẽ hình thang ABCD + B1: Vẽ AB // CD + B2: Vẽ cạnh AD và BC và đường cao AH - GV: giới thiệu cạnh. đáy, đường cao * Hoạt động 3: Bài tập áp dụng - GV: dùng bảng phụ hoặc đèn chiếu - Qua đó em thấy hình thang có tính chất gì ? * Hoạt động 4: ( Bài tập áp dụng) GV: đưa ra bài tập HS làm việc theo nhóm nhỏ Cho hình thang ABCD có 2 đáy AB và CD biết: AD // BC. CMR: AD = BC; AB = CD ABCD là hình thang GT đáy AB và CD AD // BC KL AB = CD: AD = BC Bài toán 2: A B ABCD là hình thang GT đáy AB và CD AB = CD KL AD// BC; AD = BC D C - GV: qua bài 1 và bài 2 em có nhận xét gì ? * Hoạt động 5: Hình thang vuông 1) Định nghĩa Hình thang là tứ giác có hai cạnh đối song song * Hình thang ABCD : + Hai cạnh đối // là 2 đáy + AB đáy nhỏ; CD đáy lớn + Hai cạnh bên AD và BC + Đường cao AH (H.a):= = 600 AD // BCHình thang - (H.b): Tứ giác EFGH có: = 750 = 1050 (Kề bù) = = 1050 GF// EH Hình thang - (H.c) Tứ giác IMKN có: = 1200 = 1200 IN không song song với MK đó không phải là hình thang * Nhận xét: + Trong hình thang 2 góc kề một cạnh bù nhau (có tổng = 1800) + Trong tứ giác nếu 2 góc kề một cạnh nào đó bù nhau Hình thang. * Bài toán 1 - Hình thang ABCD có 2 đáy AB và CD theo (gt)AB // CD (đn)(1) mà AD // BC (gt) (2) Từ (1) và (2)AD = BC; AB = CD ( 2 cặp đoạn thẳng // chắn bởi đương thẳng //) * Bài toán 2: (cách 2) ABC = ADC (g.c.g) * Nhận xét 2: (SGK)/ Trang 70. 2) Hình thang vuông Là hình thang có một góc vuông. IV) Củng cố: ( 6’) GV: đưa bài tập 7 ( Bằng bảng phụ) . Tìm x, y ở hình 21 V) Hướng dẫn HS học tập ở nhà: ( 1’ ) - Học bài. Làm các bài tập 6,8,9 - Trả lời các câu hỏi sau:+ Khi nào một tứ giác được gọi là hình thang. + Khi nào một tứ giác được gọi là hình thang vuông. Tuần 2 (Từ ngày 30/8 đến ngày 04/9/2010) Tiết 3: HÌNH THANG CÂN NS:28/08/2010 I) Mục tiêu: 1/ Kiến thức: - HS nắm vững các đ/n, các t/c, các dấu hiệu nhận biết về hình thang cân 2/ Kĩ năng: - Nhận biết hình thang hình thang cân, biết vẽ hình thang cân, biết sử dụng định nghĩa, các tính chất vào chứng minh, biết chứng minh 1 tứ giác là hình thang cân 3/ Thái độ: - Rèn tư duy sáng tạo, ham học và tính cẩn thận. II) Chuẩn bị: * GV: com pa, thước, tranh vẽ bảng phụ, thước đo góc * HS: Thước, com pa, bảng nhóm III) Hoạt động dạy học: Hoạt động của GV Hoạt động của HS - HS1: GV dùng bảng phụ Cho biết ABCD là hình thang có đáy là AB và CD. Tính x, y của các góc D, B - HS2: Phát biểu định nghĩa hình thang và nêu rõ các khái niệm cạnh đáy, cạnh bên, đường cao của hình thang - HS3: Muốn chứng minh một tứ giác là hình thang ta phải chứng minh như thế nào? Hoạt động 1: Định nghĩa Yêu cầu HS làm ? Nêu định nghĩa hình thang cân. GV: dùng bảng phụ a) Tìm các hình thang cân ? b) Tính các góc còn lại của mỗi HTC đó c) Có NX gì về 2 góc đối của HTC? ( Hình (b) không phải vì + 1800 * Nhận xét: Trong hình thang cân 2 góc đối bù nhau. * Hoạt động 2:Hình thành T/c, Định lý 1 Trong hình thang cân 2 góc đối bù nhau. Còn 2 cạnh bên liệu có bằng nhau không ? - GV: cho các nhóm CM & gợi ý AD không // BC ta kéo dài như thế nào ? - Hãy giải thích vì sao AD = BC ? ABCD là hình thang cân GT ( AB // DC) KL AD = BC Các nhóm CM: + AD // BC ? khi đó hình thang ABCD có dạng như thế nào ? * Hoạt động 3: Giới thiệu địmh lí 2 - GV: Với hình vẽ sau 2 đoạn thẳng nào bằng nhau ? Vì sao ? - GV: Em có dự đoán gì về 2 đường chéo AC & BD ? GT ABCD là hình thang cân ( AB // CD) KL AC = BD GV: Muốn chứng minh AC = BD ta phải chứng minh 2 tam giác nào bằng nhau ? * Hoạt động 4: Giới thiệu các phương pháp nhận biết hình thang cân. - GV: Muốn chứng minh 1 tứ giác là hình thang cân ta có mấy cách để chứng minh ? là những cách nào ? Đó chính là các dấu hiệu nhận biết hình thang cân . + Đường thẳng m // CD+ Vẽ điểm A; B m : ABCD là hình thang có AC = BD Giải+ Vẽ (D; Đủ lớn) cắt m tại A + Vẽ (C; Đủ lớn) cắt m tại B ( có cùng bán kính) 1) Định nghĩa Hình thang cân là hình thang có 2 góc kề một đáy bằng nhau Tứ giác ABCD Tứ giác ABCD là H. thang cân AB // CD ( Đáy AB; CD) = hoặc = a) Hình a,c,d là hình thang cân b) Hình (a): = 1000 Hình (c) : = 700 Hình (d) : = 900 c)Tổng 2 góc đối của HTC là 1800 2) Tính chất * Định lí 1: Trong hình thang cân 2 cạnh bên bằng nhau. Chứng minh: AD cắt BC ở O ( Giả sử AB < DC) ABCD là hình thang cân nên = ta có= nên ODC cân ( 2 góc ở đáy bằng nhau) OD = OC (1) = nên = OAB cân (2 góc ở đáy bằng nhau) OA = OB (2) Từ (1) &(2) OD - OA = OC - OB Vậy AD = BC b) AD // BC khi đó AD = BC * Chú ý: SGK * Định lí 2: Trong hình thang cân 2 đường chéo bằng nhau. Chứng minh: ADC & BCD có: + CD cạnh chung + = ( Đ/ N hình thang cân ) + AD = BC ( cạnh của hình thang cân) ADC = BCD ( c.g.c) AC = BD 3) Dấu hiệu nhận biết hình thang cân + Vẽ (D; Đủ lớn) cắt m tại A + Vẽ (C; Đủ lớn) cắt m tại B * Định lí 3: Hình thang có 2 đường chéo bằng nhau là hình thang cân. + Dấu hiệu nhận biết hình thang cân: SGK/74
Tài liệu đính kèm: