Trong quá trình học toán ở trường THCS học sinh cần biết cách tổ chức công việc của mình một cách sáng tạo. Người thầy cần rèn luyện cho học sinh kỹ năng, độc lập suy nghĩ một cách sâu sắc, sáng tạo. Vì vậy đòi hỏi người thầy một sự lao động sáng tạo biết tìm tòi ra những phương pháp để dạy cho học sinh trau dồi tư duy logic giải các bài toán.
Là một giáo viên dạy toán ở trường THCS trực tiếp bồi dưỡng đội tuyển học sinh giỏi nhiều năm tôi nhận thấy việc giải các bài toán ở chương trình THCS không chỉ đơn giản là đảm bảo kiến thức trong SGK, đó mới chỉ là những điều kiện cần nhưng chưa đủ. Muốn giỏi toán cần phải luyện tập nhiều thông qua việc giải các bài toán đa dạng, giải các bài toán một cách khoa học, kiên nhẫn, tỉ mỉ, để tự tìm ra đáp số của chúng.
Muốn vậy người thầy phải biết vận dụng linh hoạt kiến thức trong nhiều tình huống khác nhauđể tạo hứng thú cho học sinh. Một bài toán có thể có nhiều cách giải, mỗi bài toán thường nằm trong mỗi dạng toán khác nhau nó đòi hỏi phải biết vận dụng kiến thức trong nhiều lĩnh vực nhiều mặt một cách sáng tạo vì vậy học sinh phải biết sử dụng phương pháp nào cho phù hợp.
Các dạng toán về số học ở chương trình THCS thật đa dạng phong phú như: Toán về chia hết, phép chia có dư, số nguyên tố, số chính phương, phương trình nghiệm nguyên .
Đây là một dạng toán có trong SGK lớp 9 nhưng chưa đưa ra phương pháp giải chung. Hơn nữa phương trình nghiệm nguyên có rất nhiều trong các đề thi:Tốt nghiệp THCS ;Trong các đề thi học sinh giỏi huyên, học sinh giỏi tỉnh .
Song khi giải các bài toán này không ít khó khăn phức tạp. Từ thực tiễn giảng dạy tôi thấy học sinh hay bế tắc, lúng túng về cách xác định dạng toán và chưa có nhiều phương pháp giải hay.
Từ những thuận lợi, khó khăn và yêu cầu thực tiễn giảng dạy.Tôi chọn đề tài: “Rèn luyện tư duy sáng tạo qua một số dạng toán phương trình nghiệm nguyên”
Trong quá trình viết đề tài do điều kiện và kinh nghiệm không tránh khỏi khiếm khuyết. Rất mong được sự đóng góp, chỉ đạo của thầy cô giáo và các bạn đồng nghiệp.
A - Phần mở đầu I- Đặt vấn đề Trong quá trình học toán ở trường THCS học sinh cần biết cách tổ chức công việc của mình một cách sáng tạo. Người thầy cần rèn luyện cho học sinh kỹ năng, độc lập suy nghĩ một cách sâu sắc, sáng tạo. Vì vậy đòi hỏi người thầy một sự lao động sáng tạo biết tìm tòi ra những phương pháp để dạy cho học sinh trau dồi tư duy logic giải các bài toán. Là một giáo viên dạy toán ở trường THCS trực tiếp bồi dưỡng đội tuyển học sinh giỏi nhiều năm tôi nhận thấy việc giải các bài toán ở chương trình THCS không chỉ đơn giản là đảm bảo kiến thức trong SGK, đó mới chỉ là những điều kiện cần nhưng chưa đủ. Muốn giỏi toán cần phải luyện tập nhiều thông qua việc giải các bài toán đa dạng, giải các bài toán một cách khoa học, kiên nhẫn, tỉ mỉ, để tự tìm ra đáp số của chúng. Muốn vậy người thầy phải biết vận dụng linh hoạt kiến thức trong nhiều tình huống khác nhauđể tạo hứng thú cho học sinh. Một bài toán có thể có nhiều cách giải, mỗi bài toán thường nằm trong mỗi dạng toán khác nhau nó đòi hỏi phải biết vận dụng kiến thức trong nhiều lĩnh vực nhiều mặt một cách sáng tạo vì vậy học sinh phải biết sử dụng phương pháp nào cho phù hợp. Các dạng toán về số học ở chương trình THCS thật đa dạng phong phú như: Toán về chia hết, phép chia có dư, số nguyên tố, số chính phương, phương trình nghiệm nguyên. Đây là một dạng toán có trong SGK lớp 9 nhưng chưa đưa ra phương pháp giải chung. Hơn nữa phương trình nghiệm nguyên có rất nhiều trong các đề thi:Tốt nghiệp THCS ;Trong các đề thi học sinh giỏi huyên, học sinh giỏi tỉnh . Song khi giải các bài toán này không ít khó khăn phức tạp. Từ thực tiễn giảng dạy tôi thấy học sinh hay bế tắc, lúng túng về cách xác định dạng toán và chưa có nhiều phương pháp giải hay. Từ những thuận lợi, khó khăn và yêu cầu thực tiễn giảng dạy.Tôi chọn đề tài: “Rèn luyện tư duy sáng tạo qua một số dạng toán phương trình nghiệm nguyên” Trong quá trình viết đề tài do điều kiện và kinh nghiệm không tránh khỏi khiếm khuyết. Rất mong được sự đóng góp, chỉ đạo của thầy cô giáo và các bạn đồng nghiệp. II. Điều tra thực trạng trước khi nghiên cứu. Để đánh giá được khả năng của các em đối với dạng toán trên và có phương án tối ưu truyền đạt tới học sinh, tôi đã ra một đề toán cho 10 em học sinh trong đội tuyển của trường như sau: Bài 1: ( 6 đ ) a)Tìm x, y є Z biết x – y + 2xy = 6 b) Giải phương trình nghiệm nguyên: 5x – 7y = 3 Bài 2: (4 đ) Tìm nghiệm nguyên dương của phương trình : 1 + x + x2 + x3 = 2y Kết quả thu được như sau: Dưới điểm 5 Điểm 5 - 7 Điểm 8 - 10 Điểm 5 - 10 SL % SL % SL % SL % 6 60 4 40 0 0 4 40 Qua việc kiểm tra đánh giá tôi thấy học sinh không có biện pháp giải phương trình nghiệm nguyên đạt hiệu quả. Lời giải thường dài dòng, không chính xác, đôi khi còn ngộ nhận . Cũng với bài toán trên nếu học sinh được trang bị các phương pháp” Giải phương trình nghiệm nguyên “thì chắc chắn sẽ có hiệu quả cao hơn. III-Mục đích - Đề tài nhằm rèn luyện cho học sinh tư duy sáng tạo khi học và giải toán. - Biết cách định hướng và giải bài tập ngắn gọn. - Phát huy trí lực của học sinh tìm nhiều cách giải hay phát triển bài toán mới. - Giúp học sinh tự tin khi giải toán hoặc trong thi cử. IV-Phạm vi áp dụng: - áp dụng vào việc giảng dạy các chuyên đề trong trường học hoặc bồi dưỡng đội tuyển học sinh giỏi Toán lớp 9, ôn tập cho học sinh chuẩn bị thi vào các lớp chọn, lớp chuyên PTTH. - Thời gian nghiên cứu có hạn mặc dù được sự góp ý chân thành của nhiều giáo viên có chuyên môn cao, song vẫn còn nhiều điều bỏ ngỏ để tiếp tục khai thác và đi sâu hết dạng toán này. B- Nội dung Phương trình nghiệm nguyên rất đa dạng và phong phú nó có thể là phương trình một ẩn, nhiều ẩn. Nó có thể là phương trình bậc nhất hoặc bậc cao. Không có cách giải chung cho mọi phương trình, để giải các phương trình đó thường dựa vào cách giải một số phương trình cơ bản và một số phương pháp giải như sau: Chương I - Các dạng phương trình cơ bản I-Phương trình nghiệm nguyên dạng: ax + by = c (1) với a, b, c є Z 1.Các định lí: a. Định lí 1: Điều kiện cần và đủ để phương trình ax + by = c (trong đó a,b,c là các số nguyên khác 0 ) có nghiệm nguyên (a,b) là ước của c. b.Định lí 2: Nếu (x0, y0) là một nghiệm nguyên của phương trình ax + by = c thì nó có vô số nghiệm nguyên và nghiệm nguyên (x,y) được cho bởi công thức: Với t є Z, d = (a,b) 2.Cách giải: a.Tiến hành qua 5 bước sau: (cách giải chung) Bước 1: Tìm d = (a,b) Khi đó ax + by = c Û a1x + b1y = c1 Với a = da1; b = db1; c = dc1; (a1; b1) = 1 Bước 2: Viết thuật toán Ơclit cho 2 số a1 và b1 Giả sử : > Ta có a1 = q0 + r1 b1 = r1q1 + r2 r1 = r2q2 +r3 rn-2 = rn-1 + rn Với rn = 1 Bước 3: Tính a0 + = Bước 4: Lấy nghiệm riêng (x0’; y0’) của phương trình a1x + b1y = 1 sao cho : x0’ = m x0’ = n hoặc y0’ = n y0’ = m Xác định dấu bằng cách thử trực tiếp được (x0’, y0’) Bước 5: x0 = c1 x0’; y0 = c1y0’ là nghiệm riêng của phương trình a1x + b1y = c1 ị nghiệm tổng quát của phương trình là: x = x0 + b1 t y = y0 –a1t (với t є Z ) Ví dụ 1: Giải phương trình nghiệm nguyên 5x – 7y = 3 Hướng dẫn: Ta nhận thấy (5, 7) = (7, 3) = 1 . Vậy phương trình có nghiệm nguyên Để giải ta tiến hành các bước: - Viết thuật toán Ơclit cho 2 số 5 và 7 7 = 5.1 + 2 ị = 1 + = 5 = 2.2 + 1 - Tìm nghiệm riêng của phương trình 5x – 7y = 1 (x0’, y0’) = (3, 2) - Tìm nghiệm riêng của phương trình 5x – 7y = 3 là (x0, y0) = (9, 6) ị nghiệm tổng quát của phương trình là: x = 9 – 7t hay x = 7t + 2 y = 6 – 5t y = 5t + 1 (t є Z ) Ví dụ 2: Giải phương trình nghiệm nguyên 6x –14 y = 12 Hướng dẫn: Ta nhận thấy (6 ,14) = (6 ,12) = 2 ị pt có nghiệm ta tiến hành giải như sau: Bước 1: 6x –14 y = 12 Û 3x – 7y = 6 Bước 2: Viết thuật toán Ơclit cho 3 và 7 7 = 3.2 + 1 Bước 3: Tính = q0 = 2 = Bước 4: Tìm nghiệm riêng của phương trình 3x – 7y = 1 là (x0’, y0’) = (-2; -1) Bước 5: Xác định nghiệm riêng của pt 3x – 7y = 6 là (x0; y0) = (-12; -6) ị Nghiệm tổng quát của phương trình 6x –14 y = 12 là x = -12 – 7t hay x = 7t + 2 y = -6 – 3t y = 3t (t є Z ) * Nhận xét: Trên đây là phương pháp chung để giải phương trình nghiệm nguyên dạng ax + by = c Tuy nhiên khi đi vào bài toán cụ thể bằng các kiến thức về chia hết biết khéo léo sử dụng sẽ cho lời giải ngắn gọn. b.Cách giải thông thường khác (3 bước) Bước 1: Rút ẩn này theo ẩn kia (giả sử rút x theo y) Bước 2: Dựa vào điều kiện nguyên của x, tính chất chia hết suy luận để tìm y Bước 3: Thay y vào x sẽ tìm được nghiệm nguyên Ví dụ 1: Giải phương trình nghiệm nguyên: 2x + 5y =7 Hướng dẫn: Ta có 2x + 5y =7 Û x = Û x = 3 – 2y + Do x, y nguyên ị nguyên. Đặt = t với (t є Z ) ị y = 1 – 2t ị x = 3 – 2(1- 2t) + t = 5t + 1 Vậy nghiệm tổng quát của phương trình là: x = 5t + 1 y = -2t +1 (t є Z ) Ví dụ 2: Giải phương trình nghiệm nguyên 6x – 15 y = 25 Hướng dẫn: Ta thấy( 6,15 ) = 3 mà 3/25 Vậy không tồn tại x,y nguyên sao cho 6x- 15y = 25 Ví dụ 3: Tìm nghiệm nguyên dương của phương trình. 5x + 7y = 112 Hướng dẫn: Ta có 5x + 7y = 112 ị x = = 22 - y + Do x, y nguyên ị nguyên hay (2 – 2y) 5 Û 2(1-y) 5; (2 , 5) = 1 ị (1-y) 5 hay (y-1)5 . Đặt y-1 = 5t (t є Z ) ị y = 5t +1 thay y vào x ta có x = 21 – 7t ị lại có x > 0; y > 0 ị 5t + 1 > 0 t > - 21 – 7t > 0 t < 3 ị t = Nếu t = 0 ị x = 21; y = 1 Nếu t = 1 ị x = 14; y = 6 Nếu t = 2 ị x = 7; y = 11 II. Phương trình nghiệm nguyên dạng a1x1 + a2x2 + + anxn= c (2) Với a, c є Z (i = 1,2n); n ³ 2 1.Định lý: Điều kiện cần và đủ để phương trình (2) có nghiệm là (a1, a2,an) \ c 2.Cách giải: Đưa phương trình về 1 trong 2 dạng sau: a. Có một hệ số của một ẩn bằng 1 Giả sử a1 = 1. Khi đó x1 = c – a2x2 – a3x3 - - anxn với x1, x2,., xn є Z Nghiệm của phương trình là: (c - a2x2 – a3x3 - - anxn , x2,., xn) với x2,., xn nguyên bất kỳ b. Có hai hệ số là hai số nguyên tố cùng nhau Giả sử ( a1, a2 ) = 1. Khi đó pt (2) Û a1x1 + a2x2 = c - a3x3 - - anxn Giải phương trình theo 2 ẩn x1, x2 Ví dụ 4: Giải phương trình trên tập số nguyên 6x + 15y + 10 z = 3 Hướng dẫn: Phương trình 6x + 15y + 10 z = 3 có nghiệm nguyên vì (6 ,15, 10) = 1 và 1/3 Cách 1: Ta biến đổi 6x + 15y + 10 z = 3 Û x + 10(y + z) + 5 ( x+ y) = 3 Đặt t = y + z, k = x + y với( t, k є Z). Ta có: x + 10 t + 5k = 3 Vậy nghiệm tổng quát của phương trình x = 3- 10 t – 5k y = - 3 + 10 t + 6k ( t, k є Z) z = 3 – 9 t – 6k Cách 2: 6x + 15y + 10 z = 3 Û 6 (x + z) + 15 y + 4 z = 3 Đặt x + z = t ta có 6t +15 y + 4z = 3 Û 15 y + 4z = 3 – 6t Ta có cặp số (-1; 4) là nghiệm riêng của pt 15 y + 4z = 1 nên (-3 + 6t; 12 – 24 t) là nghiệm riêng của phương trình 15 y + 4z = 3 – 6t Do đó nghiệm tổng quát là: y = -3 + 6t + 4k (k є Z) z = 12 – 24t – 15 k lại có t = x + z ị x = t – z ị x = -12 = 25t + 15 k Vậy nghiệm tổng quát của phương trình 6x + 15y + 10 z = 3 là: x = -12 = 25t + 15 k y = -3 + 6t + 4k với ( t, k є Z) z = 12 – 24t – 15 k III. Phương trình nghiệm nguyên đưa về dạng g (x1, x2,., xn) . h (x1, x2,., xn) = a (3) Với a є Z 1.Cách giải: Đặt g (x1, x2,., xn) = m (với m là ước của a) ị h(x1, x2,., xn) = Giải hệ: g (x1, x2,., xn) = m h(x1, x2,., xn) = tìm được x1, x2,., xn thử vào (3) ta được nghiệm của phương trình. 2.Chú ý: -Nếu a = 0 ta có g (x1, x2,., xn) = 0 h(x1, x2,., xn) = 0 -Nếu a = pa với p nguyên tố thì từ pt (3) ta có: g (x1, x2,., xn) = pa1 h(x1, x2,., xn) = pa2 Với a1 + a2 = a Ví dụ 5: Tìm x, y є Z biết x – y + 2xy = 6 Hướng dẫn: Ta có x – y + 2xy = 6 Û 2 x – 2y + 4 xy = 12 Û 2 x – 2y + 4 xy –1 = 11 Û (2x – 1) + 2y(2x-1) = 11 Û (2x – 1) (2y + 1) = 11 Ta có 11 = 1.11= (-1)(-11) = 11.1 = (-11)(-1) Ta có 2y + 1 = 1 ị (x; y) = (6; 0) 2x – 1 = 11 2y + 1 = -1 ị (x; y) = (-5; -1) 2x – 1 = -11 2y + 1 = 11 ị (x; y) = (1, 5) 2x – 1 = 1 2y + 1 = -11 ị (x; y) = ( 0; -6) 2x – 1 = -1 Ví dụ 6: Tìm nghiệm nguyên dương của phương trình 1 + x + x2 + x3 = 2y Hướng dẫn: Ta có 1 + x + x2 + x3 = 2y Û (1 + x) (1 + x2) = 2y ị 1 + x = 2 m và 1 + x2 = 2y – m (m nguyên dương) ị x = 2 m – 1 ị x2 = 22m – 2 m +1 + 1 x2 = 2y – m - 1 x2 = 2y – m – 1 ị 22m – 2m + 1 + 1 = 2 y – m - 1 ị 2 y – m – 22m + 2m +1 = 2 Nếu m = 0 ị x = 0 ; y = 0 (t/m) Nếu m > 0 ị 2 y – m – 1 – 22m – 1 + 2m = 1 mà 22m – 1và 2m đều là số chẵn nên: ị 2 y – m – 1 lẻ ị 2 y – m – 1 = 1 ị y – m – 1 = 0 ị y = m + 1 ị 2 m - 22m – 1 = 0 ị 2 m = 22m – 1 ị m = 2m – 1 ị m = 1 ị y = 2 ; x = 1 Vậy (x, y) = (0; 0); (1; 2) IV. Phương trình nghiệm nguyên đưa về dạng [g1 (x1, x2,., xn)]2 + [g2 (x1, x2,., xn)]2 + + [gn (x1, x2,., xn)]2 = 0 1.Cách giải:Ta thấy vế trái của phương trình l ... 8b = 20 loại Với a = 1 ị (1+1)2 + 3.12 = 8b + 21 ị 8b = -14 loại Với a = 2 ị (1+ 2)2 + 3.22 = 8b + 21 ị 8b = 0 ị b = 0 Với a = 3 ị (1+ 3)2 + 3.32 = 8b + 21 ị 8b = 22 loại Vậy được a = 2, b = 0 ị xy = 0 x + y = 2 ị (x, y ) = (0, 2); (2, 0) thoả mãn Bài 6 :Tìm tất cả các nghiệm nguyên dương x, y sao cho x2 + 4x – y2 = 1 Hướng dẫn: Cách 1: Ta có x2 + 4x – y2 = 1 Û (x + 2)2 - y2 = 5 Û (x + 2+ y)(x+ 2-y) = 5 mà x, y nguyên dương ị (x + 2+ y) > (x+ 2-y) ị x+ 2 + y = 5 ị x = 1, y = 2 x + 2 – y = 1 Vậy nghiệm của phương trình là x = 1, y = 2 Cách 2: Ta có x2 + 4 x – y2 = 1 Û x2 + 4 x – (y2 + 1) = 0 = 4 + y2 + 1 ị x = Để phương trình có nghiệm thì là số chính phương ị 4 + y2 + 1 = k2 Û (k- y) (k+ y) = 5 ị y = 2 thay vào phương trình tìm được x = 1 Vậy nghiệm nguyên dương của phương trình là x = 1; y = 2 Bài 7: Hai đội cờ thi đấu với nhau mỗi đấu thủ của đội này phải đấu 1 ván với mỗi đấu thủ của đội kia. Biết rằng tổng số ván cờ đã đấu bằng 4 lần tổng số đấu thủ của hai đội và biết rằng số đấu thủ của ít nhất trong 2 đội là số lẻ hỏi mỗi đội có bao nhiêu đấu thủ. Hướng dẫn: Gọi x, y lần lượt là số đấu thủ của đội 1 và đội 2 (x, y nguyên dương ) Theo bài ra ta có xy = 4 (x + y) Đây là phương trình nghiệm nguyên ta có thể giải bằng các cách sau Cách 1: Có xy = 4(x + y) Û xy – 4x – 4y + 16 = 16 Û (x-4) (y - 4) = 16 mà 16 = 1.16 = 2.8 = 4.4 lại có ít nhất 1 đội có số đấu thủ lẻ ị x – 4 = 1 Û x = 5 hoặc x = 20 y-4 = 16 y = 20 y = 5 Cách 2: Ta thấy x, y bình đẳng.Không mất tính tổng quát ta giả sử xÊ y Ta có x, y nguyên dương xy = 4 (x + y) Û + = 1 lại có ³ Û + Ê Û Ê 1 ị x Ê 8 ị x= 5, 6, 7, 8 Mà Ê 1 ị x > 4 Thử trực tiếp ta được x = 5, y = 20 (thoả mãn) Vậy 1 đội có 5 đấu thủ còn đội kia có 20 đấu thủ Bài 8: Tìm năm sinh của Bác Hồ biết rằng năm 1911 khi Bác ra đi tìm đường cứu nước thì tuổi Bác bằng tổng các chữ số của năm Bác sinh cộng thêm 3. Hướng dẫn: Ta thấy nếu Bác Hồ sinh vào thể kỷ 20 thì năm 1911 Bác nhiều nhất là 11 tuổi (1+ 9 + 0 + 0 + 3) loại Suy ra Bác sinh ra ở thế kỷ 19 Gọi năm sinh của Bác là 18 xy (x, y nguyên dương, x, y Ê 9) Theo bài ra ta có 1911 - 18 xy = 1 + 8 + x + y = 3 Û 11x + 2y = 99 ị 2y 11 mà (2, 11) = 1 ị y 11 mà 0Ê y Ê 9 ị y = 0 ị x = 9 Vậy năm sinh của Bác Hồ là 1890 Bài 9: Tìm tất cả các số nguyyên x, y thoả mãn phương trình = Hướng dẫn: Ta có = Û 7 (x+ y) = 3 (x2 – xy + y2) Đặt x + y = p , x – y = q ị p, q nguyên ị x = ; y = thay vào phương trình có dạng 28 p = 3 (q2 + 3 q2) ị p > 0 và p 3 đặt p = 3k (k ẻZ) ị 28k = 3(3k2+ q2) ị k 3 và k có dạng 3m (mẻ Z+) ị 28 m = 27m2 + q ị m( 28 – 27m) = q2 ³ 0 ị m = 0 hoặc m = 1 Với m = 0 ị k = 0 ị q = 0 ị x = y = 0 (loại) Với m = 1 thì k = 3; p = 9 ị 28 = 27 + q2 ị q = ± 1 Khi p = 9, q = 1 thì x = 5, y= 4 khi p = 9, q = 1- thì x = 4, y= 5 Vậy nghiệm của phương trình là (x, y) = (4, 5); (5, 4) Bài 10: Hãy dựng một tam giác vuông có số đo 3 cạnh là a, b, c là những số nguyên và có cạnh đo được 7 đơn vị Hướng dẫn: Giả sử cạnh đo được 7 đơn vị là cạnh huyền (a = 7) ị b2 + c2 = 72 ị b2 + c2 7 ị b 7; c 7 (vì số chính phương chia hết cho 7 dư 0, 1, 4, 2) lại có 0<b, c< 7 loại ị Cạnh đo được là cạnh góc vuông giả sử b = 7 Ta có a2 – c2 = 49 Û (a+c)(a-c) = 49 ị a+ c = 49 ị a = 25 Vậy tam giác cần dựng có số đo 3 cạnh a – c = 1 c = 24 là 7, 25, 24 Thực nghiệm sư phạm Sử dụng tính chất nghiệm của phương trình bậc 2 để giải phương trình nghiệm nguyên. I-Mục đích, yêu cầu: 1) Thông qua việc giải các bài tập hệ thống và khắc sâu thêm các kiến thức cơ bản về phương trình bậc 2, nghiệm của phương trình bậc hai. 2) Củng cố kiến thức về số chính phương, phép chia hết, phép chia có dư 3) Phát huy trí lực của học sinh trong dạy toán II- Đồ dùng dạy học: Phiếu học tập, máy chiếu giấy trong hoặc bảng phụ III-Các hoạt động trong giờ: Hoạt động của thầy Hoạt động của trò Hoạt động 1 Kiểm tra bài cũ Giáo viên nêu câu hỏi kiểm tra: ?1. Viết công thức nghiệm tổng quát của phương trình bậc 2 a x2 + bx + c = 0 (a ạ 0)? ?2. Sắp xếp phương trình bậc hai sau theo ẩn x; theo ẩn y 3x2 + y2 + 4xy + 4x + 2y + 5 = 0 ?3.Nêu hệ quả của định lý Viet về phương trình bậc hai Giáo viên nhận xét, đánh giá . Ba em học sinh lên bảng trình bày. HS1: Phương trình a x2 + bx + c = 0 = b2 – 4 ac Nếu < 0 phương trình vô nghiệm Nếu = 0 phương trình có 1 nghiệm kép x = Nếu > 0 phương trình có 2 nghiệm phân biệt x1, 2 = HS2: - Đối với ẩn y: y2 + (4x + 2)y + 3x2 + 4x + 5 = 0 - Đối với ẩn x: 3x2 + ( 4y +4 )x + 3x2 + 4x + 5 = 0 HS3: Nếu phương trình a x2 + bx + c = 0 (a ạ 0 ) có hai nghiệm x1 và x2 thì : Học sinh đối chiếu kết quả với bài của mình, nhận xét Hoạt động 2: Các ví dụ Giáo viên đặt vấn đề: Giải phương trình nghiệm nguyên 3x2 + y2 + 4xy + 4x + 2y + 5 = 0 (1) Gợi ý: - Viết phương trình (1) thành phương trình bậc 2 ẩn y rồi tính ? - Nếu pt bậc 2 có nghiệm thì nghiệm được tính bằng công thức nào? - Do x, y nguyên có nhận xét gì ? - Viết số 4 dưới dạng tích hai số nguyên? - Em có nhận xét gì về x – k và x + k - Thay x và k vào (1) tìm y? *Em hãy thực hiện tương tự với ẩn y? Đã vận dụng kiến thức nào để giải phương trình đã cho. Yêu cầu HS kiểm tra các bước giải Qua ví dụ trên em hãy nêu lại phương pháp giải? ( giáo viên đưa lên màn hình tóm tắt theo 6 bước ) Bước 1: Viết phương trình bậc hai theo ẩn x Bước 2: Tính ị x1, 2 = Bước 3: Đặt = k2 Bước 4: Tìm y và k Bước 5: Thay y và k vào phương trình để tìm x Bước 6: Trả lời Học sinh nghe và ghi chép HS: Ví dụ 1: Giải pt nghiệm nguyên 3x2 + y2 + 4xy + 4x + 2y + 5 = 0 (1) HS: Û y2 + (4x + 2)y + 3x2 + 4x + 5 = 0 = x2 – 4 y1,2 = -(2x + 1) ± (*) Do x, y nguyên nguyên ị là số chính phương . Đặt = k2 ị x2 – 4 = k2 Û (x- k)(x+ k) = 4 Ta có 4 = 1.4 = 2.2 = (-1).(-4) = (-2). (-2) x – k; x + k cùng chẵn ị x – k = x + k = ± 2 ị k = 0, x = ± 2 thay vào (1) tìm y . Vậy nghiệm của phương trình:(x, y) = (2, -5);(-2, 3) HS: Phương trình (1) tương đương với: 3x2 + ( 4y +4 )x + 3x2 + 4x + 5 = 0 = y2 + 2y – 11 Do x, y nguyên nguyên ị là số chính phương . Đặt = k2 ị (y +1- k)( y + 1 + k) = 12 Mà y +1- k và y + 1 +k cùng chẵn 12 = 2.6 = ( -2). (-6) hoặc y = 3 hoặc y = - 5 . Thay vào (1) Vậy nghiệm của phương trình: (x, y)= (2, -5); (-2, 3) HS: Học sinh suy nghĩ, trả lời Ví dụ 2: Giải pt nghiệm nguyên x2 –(y + 5)x + 5y + 2 = 0 -yêu cầu học sinh nêu lại phương pháp giải như ví dụ 1? -Ngoài cách giải theo ví dụ 1 còn cách nào khác không? -Giả sử phương trình có hai nghiệm x1 và x2 theo định lí Viet ta có điều gì? - Tìm biểu thức liên hệ giữa x1 và x2 -Phân tích số 2 thành tích của hai số nguyên. -Tìm x1 và x2 sau đó tìm tổng của chúng -Trả lời bài toán trên Hãy nêu lại các bước làm Bước 1: - Viết hệ quả định lý Viet. Bước 2: Tìm biểu thức liên hệ gữa x1 và x2 Bước 3: Tìm x1 và x2 sau đó tìm y Bước 4: Trả lời bài toán Học sinh nghe và ghi chép Học sinh trả lời miệng Học sinh suy nghĩ trả lời. HS: Gọi x1 và x2 là nghiệm của phương trình x2 -(y + 5)x + 5y + 2 = 0 Theo định lý Viet: Ta có: 5x1 + 5x2 – x1x2 = 23 hay ( x1 – 5)( x2 – 5) = 2 Nên: hoặc ị x1 + x2 = 13 hoặc x1 + x2 = 7 ị y = 8 hoặc y = 2 Vậy (x, y) = (7,8); (6,8); (4, 2); (3, 2) là nghiệm của phương trình. HS: Học sinh trả lời miệng Hoạt động 3: Luyện tập Đối với giải nghiệm nguyên của phương trình bậc 2 gồm những phương pháp nào? Giáo đưa đề bài lên màn hình: Bài 1: Tìm nghiệm nguyên của phương trình sau x2 – 3 xy + 2y2 + 6 = 0 (2) Gọi học sinh lên bảng trình bày Tìm nghiệm cuả từng hệ(I,II,III,IV) thay vào phương trình (2) tìm x Phương pháp1: Vận dụng công thức nghiệm của phương trình bậc 2 Phương pháp2:Dùng hệ quả của định lý Viet Bài 1: Tìm nghiệm nguyên của phương trình sau x2 – 3 xy + 2y2 + 6 = 0 (2) Giải: Tính = y2 – 24 ị là số chính phương. Đặt y2 – 24 = k ị (y-k)(y+ k) = 24 lại có y – k; y + k cùng tính chẵn lẻ (I) Ngiệm (x,y)= ( 8;5) ; (7;5) (II) Ngiệm (x,y)= ( -7;-5) ; (-8;-5) (III) Ngiệm (x,y)= ( 8;7) ; (13;7) (IV) Ngiệm (x,y)= ( -8;-7) ; (-13;-7) Vậy phương trình có nghiệm (x,y)= ( 8;5) ; (7;5) ; ( -7;-5) (-8;-5);( 8;7) ; (13;7) ( -8;-7) ; (-13;-7) Hoạt động 4 Kiểm tra đánh giá GV phát phiếu học tập yêu cầu HS giải sau đó GV thu phiếu nhận xét Bài 1:Tìm nghiệm nguyên của phương trình a, x2 – 4x- y2 = 1 b, 2x2 + 2y2 – 2xy + y + x = 10 Bài 2: Tìm nghiệm nguyên của phương trình : 5x + 7y = 56 Hoạt động 5:Hướng dẫn về nhà Xem lại vở ghi. 1.Giải phương trình nghiệm nguyên sau: x2 + y2 = x + y + 8 2. Tìm giá trị nguyên của m để 2 phương trình sau có ít nhất 1 nghiệm chung 2x2 + (3m - 1)x – 3 = 0 (1) 6x2 – (2m – 3) x – 1 = 0 (2) D. Kết quả thực hiện. 1) Kết quả chung Sau khi áp dụng đề tài vào giảng dạy đa số học sinh không những nắm vững cách giải phương trình nghiệm nguyên mà còn vận dụng linh hoạt trong các dạng toán khác. 2) kết quả cụ thể Kiểm tra 10 học sinh lớp 9 theo các đợt khác nhau dưới dạng phiếu học tậpthu được kết quả sau: Đề bài Bài 1:Tìm nghiệm nguyên của phương trình a, x2 – 4x- y2 = 1 b, 2x2 + 2y2 – 2xy + y + x = 10 Bài 2: Tìm nghiệm nguyên của phương trình : 5x + 7y = 56 Dưới điểm 5 Điểm 5 - 7 Điểm 8 - 10 Điểm 5 - 10 SL % SL % SL % SL % 1 20 4 40 5 40 8 90 C – Kết luận Đề tài này đã nhận được thử nghiệm qua nhiều năm bồi dưỡng học sinh giỏi tôi thấy học sinh nắm được bài và rất hứng thú học tập. Tôi nghĩ rằng tôi cần phải cố gắng đọc thêm tài liệu, học hỏi thầy cô và các bạn đồng nghiệp để tiếp tục xây dựng đề tài ngày càng phong phú hơn. Phương pháp giải phương trình nghiệm nguyên là phương pháp được ứng dụng rộng rãi trong nhiều bài toán dạng toán. Song vì thời gian eo hẹp nên đề tài này không thể tránh được những sai sót. Hải Dương, ngày 05 tháng 6 năm 2006 Người thực hiện Xác nhận của trường THCS Trường Thành ................................................................................................................ ................................................................................................................ Lê Văn Trung ................................................................................................................ ................................................................................................................ Tài liệu tham khảo STT Tài liệu Tên tác giả 1 Chuyên đề bồi dưỡng số học Nguyễn Vũ Thanh 2 400 bài toán số học chọn lọc Vũ Dương Thuỵ Trương Công Thành Nguyễn Ngọc Đạm 3 Tìm hiểu phương trình đại số Vũ Hoàng Lâm Nguyễn Đễ 4 351 bài toán số học chọn lọc Nguyễn Đức Tấn Đặng Anh Tuấn Trần Chí Hiếu 5 Một số tạp chí toán học
Tài liệu đính kèm: