Sáng kiến kinh nghiệm Rèn kĩ năng giải bài toán phân tích đa thức thành nhân tử Đại số Lớp 8 - Năm học 2009-2010 - Lê Hữu Ân

Sáng kiến kinh nghiệm Rèn kĩ năng giải bài toán phân tích đa thức thành nhân tử Đại số Lớp 8 - Năm học 2009-2010 - Lê Hữu Ân

3.2.1 Phương php đặt nhn tử chung:

Phương php chung: - Ta thường lm như sau:

+ Tìm nhn tử chung của cc hệ số (ƯCLN của cc hệ số).

+ Tìm nhn tử chung của cc biến (mỗi biến chung lấy số mũ nhỏ nhất ).

Nhằm đưa về dạng: A.B + A.C + A.D = A.(B + C + D)

* Ch ý: Nhiều khi để lm xuất hiện nhn tử ta cần đổi dấu cc hạng tử.

 Ví dụ 1: Phn tích đa thức 14x2 y – 21xy2 + 28x2y2 thnh nhn tử. (BT-39c)-SGK-tr19)

Gio vin gợi ý:

- Tìm nhn tử chung của cc hệ số 14, 21, 28 trong cc hạng tử trn ?

( Học sinh trả lời l: 7, vì ƯCLN(14, 21, 28 ) = 7 ).

- Tìm nhn tử chung của cc biến x2 y, xy2, x2y2 ? ( Học sinh trả lời l xy ).

- Nhn tử chung của cc hạng tử trong đa thức đ cho l 7xy.

Giải: 14x2 y – 21xy2 + 28x2y2 = 7xy.2x – 7xy.3y + 7xy.4xy

= 7xy.(2x – 3y + 4xy)

Ví dụ 2: Phn tích đa thức 10x(x – y) – 8y(y – x) thnh nhn tử. (BT-39e)-SGK-tr19)

Gio vin gợi ý:

- Tìm nhn tử chung của cc hệ số 10 v 8 ? ( Học sinh trả lời l: 2 )

- Tìm nhn tử chung của x(x – y) v y(y – x) ?

 ( Học sinh trả lời l: (x – y) hoặc (y – x) )

- Hy thực hiện đổi dấu tích 10x(x – y) hoặc tích – 8y(y – x) để cĩ nhn tử chung (y – x) hoặc (x – y)?

Cch 1: Đổi dấu tích – 8y(y – x) = 8y(x – y)

Cch 2: Đổi dấu tích 10x(x – y) = –10x(y – x) (Học sinh tự giải )

 

doc 19 trang Người đăng tuvy2007 Lượt xem 710Lượt tải 2 Download
Bạn đang xem tài liệu "Sáng kiến kinh nghiệm Rèn kĩ năng giải bài toán phân tích đa thức thành nhân tử Đại số Lớp 8 - Năm học 2009-2010 - Lê Hữu Ân", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
A. MỞ ĐẦU
Lý do chọn đề tài:
Toán học là bộ môn khoa học được coi là chủ lực, bởi trước hết Toán học hình thành cho các em tính chính xác, tính hệ thống, tính khoa học và tính logic,  vì thế nếu chất lượng dạy và học toán được nâng cao thì có nghĩa là chúng ta tiếp cận với nền kinh tế tri thức khoa học hiện đại, giàu tính nhân văn của nhân loại.
Cùng với sự đổi mới chương trình và sách giáo khoa, tăng cường sử dụng thiết bị, đổi mới phương pháp dạy học nói chung và đổi mới phương pháp dạy và học toán nói riêng trong trường THCS hiện nay là tích cực hoá hoạt động học tập, hoạt động tư duy, độc lập sáng tạo của học sinh, khơi dậy và phát triển khả năng tự học, nhằm nâng cao năng lực phát hiện và giải quyết vấn đề, rèn luyện và hình thành kĩ năng vận dụng kiến thức một cách khoa học, sáng tạo vào thực tiễn. 
Trong chương trình Đại số lớp 8, dạng toán phân tích đa thức thành nhân tử là nội dung hết sức quan trọng, việc áp dụng của dạng toán này rất phong phú, đa dạng cho việc học sau này như rút gọn phân thức, quy đồng mẫu thức nhiều phân thức, giải phương trình, ... Qua thực tế giảng dạy nhiều năm, cũng như qua việc theo dõi kết quả bài kiểm tra, bài thi của học sinh lớp 8 (các lớp đã và đang giảng dạy), việc phân tích đa thức thành nhân tử là không khó, nhưng vẫn còn nhiều học sinh làm sai hoặc chưa thực hiện được, chưa nắm vững chắc các phương pháp giải, chưa vận dụng kĩ năng biến đổi một cách linh hoạt, sáng tạo vào từng bài toán cụ thể. 
Nhằm đáp ứng yêu cầu đổi mới phương pháp giảng dạy, giúp học sinh tháo gỡ và giải quyết tốt những khó khăn, vướng mắc trong học tập đồng thời nâng cao chất lượng bộ môn nên bản thân đã chọn đề tài: “ Rèn kĩ năng giải bài toán phân tích đa thức thành nhân tử ” trong môn Đại sốû lớp 8.
Đối tượng nghiên cứu:
- Rèn kĩ năng phân tích đa thức thành nhân tử.
Phạm vi nghiên cứu:
- Đề tài nghiên cứu trong phạm vi học sinh lớp 84 của trường THCS Trần Phú, năm học 2009 - 2010.
- Ý tưởng của đề tài rất phong phú, đa dạng, phạm vi nghiên cứu rộng, nên bản thân chỉ nghiên cứu qua bốn phương pháp phân tích đa thức thành nhân tử ở chương trình SGK, SBT Toán 8 hiện hành.
Phương pháp nghiên cứu:
- Nghiên cứu qua tài liệu: SGK, SGV, SBT Toán 8, tài liệu có liên quan. 
- Nghiên cứu từ thực tế giảng dạy, học tập của từng đối tượng học sinh.
- Nghiên cứu qua thực hành giải bài tập của học sinh.
- Nghiên cứu qua theo dõi kiểm tra. 
B. NỘI DUNG
Cơ sở lý luận 
Trước sự phát triển mạnh mẽ nền kinh tế tri thức khoa học, công nghệ thông tin như hiện nay, một xã hội thông tin đang hình thành và phát triển trong thời kỳ đổi mới như nước ta đã và đang đặt nền giáo dục và đào tạo trước những thời cơ và thách thức mới. Để hòa nhập tiến độ phát triển đó thì giáo dục và đào tạo luôn đảm nhận vai trò hết sức quan trọng trong việc “Đào tạo nhân lực, nâng cao dân trí, bồi dưỡng nhân tài” mà Đảng, Nhà nước đã đề ra, đó là “Đổi mới giáo dục phổ thông theo Nghị quyết số 40/2000/QH10 của Quốc Hội”.
Nhằm đáp ứng được mục tiêu giáo dục toàn diện cho học sinh, con đường duy nhất là nâng cao chất lượng học tập của học sinh ngay từ nhà trường phổ thông. Là giáo viên ai cũng mong muốn học sinh của mình tiến bộ, lĩnh hội kiến thức dễ dàng, phát huy tư duy sáng tạo, rèn tính tự học, thì môn toán là môn học đáp ứng đầy đủ những yêu cầu đó.
Việc học toán không phải chỉ là học như SGK, không chỉ làm những bài tập do Thầy, Cô ra mà phải nghiên cứu đào sâu suy nghĩ, tìm tòi vấn đề, tổng quát hoá vấn đề và rút ra được những điều gì bổ ích. Dạng toán phân tích đa thức thành nhân tử là một dạng toán rất quan trọng của môn đại số 8 đáp ứng yêu cầu này, là nền tảng, làm cơ sở để học sinh học tiếp các chương sau này, nhất là khi học về rút gọn phân thức đại số, quy đồng mẫu thức nhiều phân thức và việc giải phương trình,  Tuy nhiên, vì lý do sư phạm và khả năng nhận thức của học sinh đại trà mà chương trình chỉ đề cập đến bốn phương pháp cơ bản của quá trình phân tích đa thức thành nhân tử thông qua các ví dụ cụ thể, việc phân tích đó là không quá phức tạp và không quá ba nhân tử. 
Vấn đề đặt ra là làm thế nào để học sinh giải bài toán phân tích đa thức thành nhân tử một cách chính xác, nhanh chóng và đạt hiệu quả cao. Để thực hiện tốt điều này, đòi hỏi giáo viên cần xây dựng cho học sinh những kĩ năng như quan sát, nhận xét, đánh giá bài toán, đặc biệt là kĩ năng giải toán, kĩ năng vận dụng bài toán, tuỳ theo từng đối tượng học sinh, mà ta xây dựng cách giải cho phù hợp trên cơ sở các phương pháp đã học và các cách giải khác, để giúp học sinh học tập tốt bộ môn. 
Cơ sở thực tiễn 
Tồn tại nhiều học sinh yếu trong tính toán, kĩ năng quan sát nhận xét, biến đổi và thực hành giải toán, phần lớn do mất kiến thức căn bản ở các lớp dưới, nhất là chưa chủ động học tập ngay từ đầu chương trình lớp 8, do chay lười trong học tập, ỷ lại, trông nhờ vào kết quả người khác, chưa nỗ lực tự học, tự rèn, ý thức học tập yếu kém. 
Đa số các em sử dụng các loại sách bài tập có đáp án để tham khảo, nên khi gặp bài tập, các em thường lúng túng, chưa tìm được hướng giải thích hợp, không biết áp dụng phương pháp nào trước, phương pháp nào sau, phương pháp nào là phù hợp nhất, hướng giải nào là tốt nhất. 
Giáo viên chưa thật sự đổi mới phương pháp dạy học hoặc đổi mới chưa triệt để, ngại sử dụng đồ dùng dạy học, phương tiện dạy học, vẫn tồn tại theo lối giảng dạy cũ xưa, xác định dạy học phương pháp mới còn mơ hồ. 
Phụ huynh học sinh chưa thật sự quan tâm đúng mức đến việc học tập của con em mình như theo dõi, kiểm tra, đôn đốc nhắc nhở sự học tập ở nhà. Đặc biệt là chưa giám sát được thời gian con em mình học tập ở nhà.
Nội dung vấn đề:
3.1. Những giải pháp mới của đề tài:
* Đề tài đưa ra các giải pháp mới như sau:
- Sắp xếp bài toán theo các mức độ, những dạng toán cơ bản.
- Xây dựng các phương pháp giải cơ bản về phân tích đa thức thành nhân tử.
3.1.1/ Đối với học sinh yếu, kém: 
- Củng cố kiến thức cơ bản như: 
+ Phương pháp Đặt nhân tử chung.
+ Phương pháp Dùng hằng đẳng thức.
+ Phương pháp Nhóm nhiều hạng tử.
3.1.2/ Đối với học sinh đại trà: 
- Vận dụng và phát triển kỹ năng như: 
+ Phối hợp nhiều phương pháp (các phương pháp trên).
+ Chữa các sai lầm thường gặp của học sinh trong giải toán.
+ Củng cố các phép biến đổi cơ bản và hoàn thiện các kĩ năng thực hành.
+ Tìm tòi những cách giải hay, khai thác bài toán.
+ Giới thiệu hai phương pháp phân tích đa thức thành nhân tử (nâng cao).
3.1.3/ Đối với học sinh khá, giỏi: 
- Phát triển tư duy (giới thiệu hai phương pháp)
+ Phương pháp tách một hạng tử thành nhiều hạng tử khác.
+ Phương pháp thêm và bớt cùng một hạng tử.
3.2. Các phương pháp thường gặp:
 * Củng cố kiến thức cơ bản: Các phương pháp cơ bản: 
3.2.1 Phương pháp đặt nhân tử chung: 
Phương pháp chung: - Ta thường làm như sau:
+ Tìm nhân tử chung của các hệ số (ƯCLN của các hệ số).
+ Tìm nhân tử chung của các biến (mỗi biến chung lấy số mũ nhỏ nhất ).
Nhằm đưa về dạng: A.B + A.C + A.D = A.(B + C + D)
* Chú ý: Nhiều khi để làm xuất hiện nhân tử ta cần đổi dấu các hạng tử.
 Ví dụ 1: Phân tích đa thức 14x2 y – 21xy2 + 28x2y2 thành nhân tử. (BT-39c)-SGK-tr19)
Giáo viên gợi ý: 
- Tìm nhân tử chung của các hệ số 14, 21, 28 trong các hạng tử trên ? 
( Học sinh trả lời là: 7, vì ƯCLN(14, 21, 28 ) = 7 ).
- Tìm nhân tử chung của các biến x2 y, xy2, x2y2 ? ( Học sinh trả lời là xy ).
- Nhân tử chung của các hạng tử trong đa thức đã cho là 7xy.
Giải: 14x2 y – 21xy2 + 28x2y2 = 7xy.2x – 7xy.3y + 7xy.4xy 
= 7xy.(2x – 3y + 4xy) 
Ví dụ 2: Phân tích đa thức 10x(x – y) – 8y(y – x) thành nhân tử. (BT-39e)-SGK-tr19)
Giáo viên gợi ý: 
- Tìm nhân tử chung của các hệ số 10 và 8 ? ( Học sinh trả lời là: 2 )
- Tìm nhân tử chung của x(x – y) và y(y – x) ?
 ( Học sinh trả lời là: (x – y) hoặc (y – x) )
- Hãy thực hiện đổi dấu tích 10x(x – y) hoặc tích – 8y(y – x) để có nhân tử chung (y – x) hoặc (x – y)? 
Cách 1: Đổi dấu tích – 8y(y – x) = 8y(x – y)
Cách 2: Đổi dấu tích 10x(x – y) = –10x(y – x) (Học sinh tự giải )
Giải: 10x(x – y) – 8y(y – x) = 10x(x – y) + 8y(x – y)
 = 2(x – y).5x + 2(x – y).4y
 	 = 2(x – y)(5x + 4y)
Ví dụ 3: Phân tích đa thức 9x(x – y) – 10(y – x)2 thành nhân tử.
Lời giải sai: 9x(x – y) – 10(y – x)2 = 9x(x – y) + 10(x – y)2 (đổi dấu sai )
 	 = (x – y)[9x + 10(x – y)] (sai từ trên)
 = (x – y)(19x – 10y) (kết quả sai )
Sai lầm của học ở đây là: 
Thực hiện đổi dấu sai: 9x(x – y) – 10(y – x)2 = 9x(x – y) + 10(x – y)2 
Sai lầm ở trên là đổi dấu ba nhân tử ø: –10 và (y – x)2 của tích –10(y – x)2 
( vì –10(y – x)2 = –10(y – x)(y – x) ).
Lời giải đúng: 9x(x – y) – 10(y – x)2 = 9x(x – y) – 10(x – y)2 
 = (x – y)[9x – 10(x – y)]
 = (x – y)(10y – x) 
Qua ví dụ trên, giáo viên củng cố cho học sinh:
- Cách tìm nhân tử chung của các hạng tử ( tìm nhân tử chung của các hệ số và nhân tử chung của các biến, mỗi biến chung lấy số mũ nhỏ nhất ).
- Quy tắc đổi dấu và cách đổi dấu của các nhân tử trong một tích. 
* Chú ý: Tích không đổi khi ta đổi dấu hai nhân tử trong tích đó (một cách tổng quát, tích không đổi khi ta đổi dấu một số chẵn nhân tử trong tích đó).
3.2.2 Phương pháp dùng hằng đẳng thức:
Phương pháp chung:
 Sử dụng bảy hằng đẳng thức đáng nhớ dưới “dạng tổng hoặc hiệu” đưa về “dạng tích”:
1. A2 + 2AB + B2 = (A + B)2
2. A2 – 2AB + B2 = (A – B)2 
3. A2 – B2 = (A – B)(A + B) 
4. A3 + 3A2 B + 3AB2 + B3 = (A + B)3  ...  hoặc x3 – 1, x6 – 1 đều có chứa nhân tử x2 + x + 1. 
Ví dụ 16: Phân tích đa thức x4 + 4 thành nhân tử. (Bài tập 57d)-SGK-tr 25)
Gợi ý: Thêm 2x2 và bớt 2x2 (làm xuất hiện hằng đẳng thức)
Giải: x4 + 4 = x4 + 4x2 + 4 – 4x2 = (x2 + 2)2 – (2x)2 = (x2 + 2 – 2x)( x2 + 2 + 2x)
 Khai thác bài toán:
- Thay “4” thành “ 64y4 ”, ta có bài toán: x4 + 64y4
Hướng dẫn giải: 
 	Thêm 16x2y2 và bớt 16x2y2 : (làm xuất hiện hằng đẳng thức)
x4 + 64y4 = (x4 + 16x2y2 + 64y4 ) – 16x2y2 
 = (x2 + 8y2)2 – (4xy)2 = (x2 + 8y2 – 4xy)(x2 + 8y2 + 4xy)
Trên đây là một vài ví dụ điển hình giúp các em học sinh giải quyết những mắc mứu trong quá trình giải bài toán về phân tích đa thức thành nhân tử.
Biện pháp và kết quả thực hiện:
3.3.1 Biện pháp :
- Để thực hiện tốt kĩ năng phân tích đa thức thành nhân tử nêu trên thành thạo trong thực hành giải toán, giáo viên cần cung cấp cho học sinh các kiến thức cơ bản sau:
- Củng cố lại các phép tính, các phép biến đổi, quy tắc dấu và quy tắc dấu ngoặc ở các lớp 6, 7. 
- Ngay từ đầu chương trình Đại số 8 giáo viên cần chú ý dạy tốt cho học sinh nắm vững chắc kiến thức về nhân đơn thức với đa thức, đa thức với đa thức, các hằng thức đáng nhớ, việc vận dụng thành thạo cả hai chiều của các hằng đẳng thức.
- Khi gặp bài toán phân tích đa thức thành nhân tử, học sinh cần nhận xét:
 + Quan sát đặc điểm của bài toán: Nhận xét quan hệ giữa các hạng tử trong bài toán (về các hệ số, các biến)
+ Nhận dạng bài toán: Xét xem bài toán đã cho thuộc dạng nào? áp dụng phương pháp nào trước, phương pháp nào sau (đặt nhân tử chung hoặc dùng hằng đẳng thức hoặc nhóm nhiều hạng tử, hay dạng phối hợp các phương pháp)
+ Chọn lựa phương pháp giải thích hợp: Từ những cơ sở trên mà ta chọn lựa phương pháp cho phù hợp với bài toán.
 Lưu ý: Kinh nghiệm khi phân tích một bài toán thành nhân tử là:
* Trong một bài toán phân tích đa thức thành nhân tử
- Nếu ở bước 1, đã sử dụng phương pháp đặt nhân tử chung thì bước tiếp theo đối với biểu thức còn lại trong ngoặc, thường là thu gọn, hoặc sử dụng phương pháp nhóm hoặc dùng phương pháp hằng đẳng thức.
- Nếu ở bước 1, đã sử dụng phương pháp nhóm các hạng tử thì bước tiếp theo đối với các biểu thức đã nhóm thường sử dụng phương pháp đặt nhân tử chung hoặc dùng phương pháp hằng đẳng thức.
- Nếu ở bước 1, đã sử dụng phương pháp dùng hằng đẳng thức thì bước tiếp theo của bài toán thường sử dụng phương pháp đặt nhân tử chung hoặc dùng hằng đẳng thức.
 Chý ý: 
+ Phương pháp đặt nhân tử chung không thể sử dụng liên tiếp nhau ở hai bước liền
+ Phương pháp nhóm không thể sử dụng liên tiếp nhau ở hai bước liền
+ Phương pháp dùng hằng đẳng thức có thể sử dụng liên tiếp nhau ở hai bước liền
- Trong phương pháp đặt nhân tử chung học sinh thường hay bỏ sót hạng tử
- Trong phương pháp nhóm học sinh thường đặt dấu sai.
Vì vậy, giáo viên nhắc nhở học sinh cẩn thận trong khi thực hiện các phép biến đổi, cách đặt nhân tử chung, cách nhóm các hạng tử, sau mỗi bước giải phải có sự kiểm tra. Phải có sự đánh giá bài toán chính xác theo một lộ trình nhất định, từ đó lựa chọn và sử dụng các phương pháp phân tích cho phù hợp. 
Xây dựng học sinh thói quen học tập, biết quan sát, nhận dạng bài toán, nhận xét đánh giá bài toán theo quy trình nhất định, biết lựa chọn phương pháp thích hợp vận dụng vào từng bài toán, sử dụng thành thạo kỹ năng giải toán trong thực hành, rèn luyện khả năng tự học, tự tìm tòi sáng tạo. Khuyến khích học sinh tham gia học tổ, nhóm, học sáng tạo, tìm những cách giải hay, cách giải khác. 
3.3.2 Kết quả :
- Kết quả áp dụng kĩ năng này đã góp phần nâng cao chất lượng học tập của bộ môn đối với học sinh đại trà. 
- Cụ thể kết quả kiểm tra về dạng toán phân tích đa thức thành nhân tử được thông kê qua các giai đoạn ở hai lớp 84 năm học 2009 – 2010 như sau: 
a) Chưa áp dụng giải pháp:
 Kiểm tra khảo sát chất lượng đầu năm
Thời gian 
Đầu học kỳ I đến giữa học kỳ II
TS
HS
Trung bình trở lên 
Số lượng
Tỉ lệ (%)
Chưa áp dụng giải pháp
38
16
42,11%
* Nhận xét: Đa số học sinh chưa nắm được kỹ năng phân tích bài toán, các hằng đẳng thức đáng nhớ, quy tắc dấu, quy tắc dấu ngoặc, cách trình bày bài giải còn lung tung.
b) Áp dụng giải pháp:
Lần 1: Kiểm tra 1 tiết
Thời gian 
Đầu học kỳ I đến giữa học kỳ II
TS
HS
Trung bình trở lên 
Số lượng
Tỉ lệ (%)
Kết quả áp dụng giải pháp (lần 1)
38
23
60,53%
- Nhận xét: Học sinh đã hệ thống, nắm chắc kiến thức cơ bản về các hằng đẳng thức đáng nhớ, quy tắc dấu, quy tắc dấu ngoặc vận dụng khá tốt các phương pháp phân tích đa thức thành nhân tử trong giải toán, biết nhận xét đánh giá bài toán trong các trường hợp, trình bày khá hợp lý. 
Lần 2: Kiểm tra học kì I
Thời gian 
Đầu học kỳ I đến giữa học kỳ II
TS
HS
Trung bình trở lên 
Số lượng
Tỉ lệ (%)
Kết quả áp dụng giải pháp (lần 2)
38
35
92,11%
* Nhận xét: Học sinh nắm vững chắc các kiến về phân tích đa thức thành nhân tử, vận dụng thành thạo kỹ năng biến đổi, phân tích, biết dựa vào các bài toán đã biết cách giải truớc đó, linh hoạt biến đổi và vận dụng hằng đẳng thức và đã trình bày bài giải hợp lý hơn có hệ thống và logic, chỉ còn một số ít học sinh quá yếu, kém chưa thực hiện tốt.
Học sinh tích cực tìm hiểu kĩ phương pháp giải, phân loại từng dạng toán, chủ động lĩnh hội kiến thức, có kĩ năng giải nhanh các bài toán có dạng tương tự, đặt ra nhiều vấn đề mới, nhiều bài toán mới.
 Tóm lại: Từ thực tế giảng dạy khi áp dụng phương pháp này tôi nhận thấy học sinh nắm vững kiến thức hơn, hiểu rõ các cách giải toán ở dạng bài tập này. Kinh nghiệm này đã giúp học sinh trung bình, học sinh yếu nắm vững chắc về cách phân tích đa thức thành nhân tử trong chương trình đã học, được học và rèn luyện kĩ năng thực hành theo hướng tích cực hoá hoạt động nhận thức ở những mức độ khác nhau thông qua một chuỗi bài tập. 
Bên cạnh đó còn giúp cho học sinh khá giỏi có điều kiện tìm hiểu thêm một số phương pháp giải khác, các dạng toán khác nâng cao hơn, nhằm phát huy tài năng toán học, phát huy tính tự học, tìm tòi, sáng tạo của học sinh trong học toán.
C. KẾT LUẬN
 Bài học kinh nghiệm:
Thông qua việc nghiên cứu đề tài và những kinh nghiệm từ thực tiễn giảng dạy, cho phép tôi rút ra một số kinh nghiệm sau:
- Đối với học sinh yếu kém: Là một quá trình liên tục được củng cố và sửa chữa sai lầm, cần rèn luyện các kỹ năng để học sinh có khả năng nắm được phương pháp vận dụng tốt các phương pháp phân tích cơ bản vào giải toán, cho học sinh thực hành theo mẫu với các bài tập tương tự, bài tập từ đơn giản nâng dần đến phức tạp, không nên dẫn các em đi quá xa nội dung SGK. 
- Đối với học sinh đại trà: Giáo viên cần chú ý cho học sinh chỉ nắm chắc các phương pháp cơ bản, kĩ năng biến đổi, kĩ năng thực hành và việc vận dụng từng phương pháp đa dạng hơn vào từng bài tập cụ thể, luyện tập khả năng tự học, gợi sự suy mê hứng thú học, kích thích và khơi dậy óc tìm tòi, chủ động chiếm lĩnh kiến thức. 
- Đối với học sinh khá giỏi: Ngoài việc nắm chắc các phương pháp cơ bản, ta cần cho học sinh tìm hiểu thêm các phương pháp phân tích nâng cao khác, các bài tập dạng mở rộng giúp các em biết mở rộng vấn đề, cụ thể hoá vấn đề, tương tự hoá vấn đề để việc giải bài toán phân tích đa thức thành nhân tử tốt hơn. Qua đó tập cho học sinh thói quen tự học, tự tìm tòi sáng tạo, khác thác cách giải, khai thác bài toán khác nhằm phát triển tư duy một cách toàn diện cho quá trình tự nghiên cứu của các em.
- Đối với giáo viên: Giáo viên thường xuyên kiểm tra mức độ tiếp thu và vận dụng của học sinh trong quá trình cung cấp các thông tin mới có liên quan trong chương trình đại số 8 đã đề cập ở trên.
Giáo viên phải định hướng và vạch ra những dạng toán mà học sinh phải liên hệ và nghĩ đến để tìm hướng giải hợp lý như đã đề cập, giúp học sinh nắm vững chắc hơn về các dạng toán và được rèn luyện về những kĩ năng phân tích một cách tường minh trong mỗi dạng bài tập để tìm hướng giải sau đó biết áp dụng và phát triển nhanh trong các bài tập tổng hợp, kĩ năng vận dụng các phương pháp phân tích đa thức thành nhân tử một cách đa dạng hơn trong giải toán. Đồng thời tạo điều kiện để học sinh được phát triển tư duy một cách toàn diện, gợi sự suy mê hứng thú học tập, tìm tòi sáng tạo, kích thích và khơi dậy khả năng tự học của học sinh, chủ động trong học tập và trong học toán.
Nếu thực hiện tốt phương pháp trên trong quá trình giảng dạy và học tập thì chất lượng học tập bộ môn của học sinh sẽ được nâng cao hơn, đào tạo được nhiều học sinh khá giỏi, đồng thời tuyển chọn được nhiều học sinh giỏi cấp trường, cấp huyện, tỉnh,....
* Hướng phổ biến áp dụng:
Đề tài được triển khai phổ biến và áp dụng rộng rãi trong chương trình đại số lớp 8, cho các năm học sau, cho những trường cùng loại hình. 
* Hướng nghiên cứu phát triển:
Đề tài sẽ được nghiên cứu tiếp tục ở các phương pháp phân tích đa thức thành nhân tử khác (nâng cao)
Đề tài nghiên cứu cho các đa thức phức tạp hơn, đi sâu vào việc nghiên cứu các đa thức đặc biệt. 
Với đề tài này, kinh nghiệm còn nhiều hạn chế và sẽ có thiếu sót nhất định. Rất mong sự đóng góp tận tình của các anh chị em đồng nghiệp và quý cấp lãnh đạo Giáo Dục. 
Xin chân thành cảm ơn !
 Ngày 25 tháng 03 năm 2010
 Người thực hiện:
 Lê Hữu Aân
NHẬN XÉT ĐÁNH GIÁ CỦA ..
Trang 18
....................

Tài liệu đính kèm:

  • docSKKN TOAN 8(9).doc