1. Phân tích đa thức thành nhân tử
1.(a - x)y3 - (a - y)x3 + (x - y)a3.
2.bc(b + c) + ca(c + a) + ba(a + b) + 2abc.
3.x2 y + xy2 + x2 z + xz2+ y2 z + yz2 + 2xyz.
2. Tìm x,y thỏa mãn: x2 + 4y2 + z2 = 2x + 12y - 4z - 14.
3. Cho a +| b + c + d = 0.
Chứng minh rằng a3 + b3 + c3 + d 3= 3(c + d)( ab + cd).
4. Chứng minh rằng nếu x + y + z = 0 thì :
2(x5 + y5 + z5) = 5xyz(x2 + y2 + z2).
5. Chứng minh rằng với x,y nguyên thì :
A = y4 + (x + y) (x + 2y) (x + 3y) (x + 4y)
là số chính phương.
6. Biết a - b = 7. Tính giá trị của biểu thức sau:
7. Cho x,y,z là 3 số thỏa mãn đồng thời: . Hãy tính giá trị biếu thức
P = .
8.
a.Tính .
b.Cho a + b + c = 9 và a2 + b2 + c2 = 53.
Tính ab + bc + ca.
9. Cho 3 số x,y,z thỏa mãn điều kiện
x + y + z = 0 và xy + yz + zx = 0.
Hãy tính giá trị của Biếu thức : S = (x-1)2005 + (y - 1)2006 + (z+1)2007
10. Cho 3 số a,b,c thỏa điều kiện : .
Tính Q = (a25 + b25)(b3 + c3)(c2008 - a2008).
Phân tích đa thức thành nhân tử 1.(a - x)y3 - (a - y)x3 + (x - y)a3. 2.bc(b + c) + ca(c + a) + ba(a + b) + 2abc. 3.x2 y + xy2 + x2 z + xz2+ y2 z + yz2 + 2xyz. Tìm x,y thỏa mãn: x2 + 4y2 + z2 = 2x + 12y - 4z - 14. Cho a +| b + c + d = 0. Chứng minh rằng a3 + b3 + c3 + d 3= 3(c + d)( ab + cd). Chứng minh rằng nếu x + y + z = 0 thì : 2(x5 + y5 + z5) = 5xyz(x2 + y2 + z2). Chứng minh rằng với x,y nguyên thì : A = y4 + (x + y) (x + 2y) (x + 3y) (x + 4y) là số chính phương. Biết a - b = 7. Tính giá trị của biểu thức sau: Cho x,y,z là 3 số thỏa mãn đồng thời:. Hãy tính giá trị biếu thức P = . a.Tính . b.Cho a + b + c = 9 và a2 + b2 + c2 = 53. Tính ab + bc + ca. Cho 3 số x,y,z thỏa mãn điều kiện x + y + z = 0 và xy + yz + zx = 0. Hãy tính giá trị của Biếu thức : S = (x-1)2005 + (y - 1)2006 + (z+1)2007 Cho 3 số a,b,c thỏa điều kiện : . Tính Q = (a25 + b25)(b3 + c3)(c2008 - a2008). Sử dụng hằng đẳng thức và đồng dư TÌM GIÁ TRỊ LỚN NHẤT - GIÁ TRỊ NHỎ NHẤT I: DẠNG ----------------------------------------------------------------------------------------------- Nếu a > 0 : Suy ra Khi Nếu a < 0 : Suy ra Khi Một số ví dụ: Tìm GTNN của A = 2x2 + 5x + 7 Giải:A = 2x2 + 5x + 7 = = . Suy ra . Tìm GTLN của A = -2x2 + 5x + 7 Giải: A = -2x2 + 5x + 7 = -= £ . Suy ra . Tìm GTNN của B = 3x + y - 8x + 2xy + 16. Giải: B = 3x + y - 8x + 2xy + 16 = 2(x - 2) + (x + y) + 8 ³ 8. Þ MinB = 8 khi : Û . Tìm GTLN của C = -3x - y + 8x - 2xy + 2. Giải: C = -3x - y + 8x - 2xy + 2 = 10 - £ 10. Þ GTLNC = 10 khi: Û . BÀI TẬP: Tìm GTNN Tìm GTLN B = 1 + 3x - x2 Tìm GTLN D = Tìm GTNN của F = x4 + 2x3 + 3x2 + 2x + 1. Tìm GTNN của G = Tìm GTNN của M = x + 2y - 2xy + 2x - 10y. Tìm GTNN C = Tìm GTNN của N = (x +1) + ( x - 3) Tìm GTNN của K = x + y - xy +x + y Bài tập: Chứng minh rằng Biếu thức P = không phụ thuộc vào x. Cho biểu thức M = . Tìm tập xác định của M. Tính giá trị của x để M = 0. Rút gọn M. Cho a,b,c là 3 số đôi một khác nhau. Chứng minh rằng : Cho biểu thức : B = Rút gọn B Chứng minh rằng : n8 + 4n7 + 6n6 + 4n5 + n4 16 với n Z Rút gọn biểu thức : với x -3; x 3; y -2. Cho Biếu thức : A = . Tìm điều kiện có nghĩa và Rút gọn biểu thức A. Tìm giá trị của x để A > 0. Tìm giá trị của A trong trường hợp . a.Thực hiện phép tính: a.A = . b. Rút gọn C = . Cho a,b,c là 3 số nhau đôi một. Tính S = . Tính giá trị của biểu thức : biết: Cho a + b + c = 1 và . Nếu . Chứng minh rằng xy + yz + zx = 0. b.Nếu a3 + b3 + c3 = 1. Tính giá trị của a,b,c Cho Biếu thức : . Tính giá trị của A khi a = -0,5. Tính giá trị của A khi : 10a2 + 5a = 3. Chứng minh nếu xyz = 1 thì: . Chứng minh đẳng thức sau: Thực hiện phép tính: . Tính tổng : S(n) = . Rút gọn rồi tính giá trị của biểu thức : A = . Biết a là nghiệm của Phương trình : . Gọi a,b,c là độ dài 3 cạnh của tam giác biết rằng: Chứng minh rằng tam giác đó là tam giác đều. Chứng minh rằng nếu a,b là 2 số dương thỏa điều kiện: a + b = 1 thì : Thực hiện phép tính: A = Rút gọn biểu thức : A = . Chứng minh rằng biểu thức sau luôn dương trong TXĐ: B = Rút gọn rồi Tính giá trị biếu thức với x + y = 2007. A = . Cho 3 số a,b,c 0 thỏa mãn đẳng thức: . Tính giá trị biểu thức P = . Cho biểu thức : . Chứng minh rằng nếu : x + y + z = 0 thì A = 1.
Tài liệu đính kèm: