Một số bài ôn luyện học sinh giỏi môn Toán Lớp 8

Một số bài ôn luyện học sinh giỏi môn Toán Lớp 8

1. Phân tích đa thức thành nhân tử

1.(a - x)y3 - (a - y)x3 + (x - y)a3.

2.bc(b + c) + ca(c + a) + ba(a + b) + 2abc.

3.x2 y + xy2 + x2 z + xz2+ y2 z + yz2 + 2xyz.

2. Tìm x,y thỏa mãn: x2 + 4y2 + z2 = 2x + 12y - 4z - 14.

3. Cho a +| b + c + d = 0.

Chứng minh rằng a3 + b3 + c3 + d 3= 3(c + d)( ab + cd).

4. Chứng minh rằng nếu x + y + z = 0 thì :

2(x5 + y5 + z5) = 5xyz(x2 + y2 + z2).

5. Chứng minh rằng với x,y nguyên thì :

A = y4 + (x + y) (x + 2y) (x + 3y) (x + 4y)

 là số chính phương.

6. Biết a - b = 7. Tính giá trị của biểu thức sau:

7. Cho x,y,z là 3 số thỏa mãn đồng thời: . Hãy tính giá trị biếu thức

P = .

8.

a.Tính .

b.Cho a + b + c = 9 và a2 + b2 + c2 = 53.

 Tính ab + bc + ca.

9. Cho 3 số x,y,z thỏa mãn điều kiện

x + y + z = 0 và xy + yz + zx = 0.

 Hãy tính giá trị của Biếu thức : S = (x-1)2005 + (y - 1)2006 + (z+1)2007

10. Cho 3 số a,b,c thỏa điều kiện : .

 Tính Q = (a25 + b25)(b3 + c3)(c2008 - a2008).

 

doc 4 trang Người đăng haiha338 Lượt xem 632Lượt tải 0 Download
Bạn đang xem tài liệu "Một số bài ôn luyện học sinh giỏi môn Toán Lớp 8", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Phân tích đa thức thành nhân tử 
1.(a - x)y3 - (a - y)x3 + (x - y)a3.
2.bc(b + c) + ca(c + a) + ba(a + b) + 2abc.
3.x2 y + xy2 + x2 z + xz2+ y2 z + yz2 + 2xyz.
Tìm x,y thỏa mãn: x2 + 4y2 + z2 = 2x + 12y - 4z - 14.
Cho a +| b + c + d = 0. 
Chứng minh rằng a3 + b3 + c3 + d 3= 3(c + d)( ab + cd).
Chứng minh rằng nếu x + y + z = 0 thì : 
2(x5 + y5 + z5) = 5xyz(x2 + y2 + z2).
Chứng minh rằng với x,y nguyên thì :
A = y4 + (x + y) (x + 2y) (x + 3y) (x + 4y)
 là số chính phương.
Biết a - b = 7. Tính giá trị của biểu thức sau: 
Cho x,y,z là 3 số thỏa mãn đồng thời:. Hãy tính giá trị biếu thức 
P = .
a.Tính .
b.Cho a + b + c = 9 và a2 + b2 + c2 = 53.
 Tính ab + bc + ca.
Cho 3 số x,y,z thỏa mãn điều kiện 
x + y + z = 0 và xy + yz + zx = 0.
 Hãy tính giá trị của Biếu thức : S = (x-1)2005 + (y - 1)2006 + (z+1)2007
Cho 3 số a,b,c thỏa điều kiện : . 
 Tính Q = (a25 + b25)(b3 + c3)(c2008 - a2008).
Sử dụng hằng đẳng thức và đồng dư
TÌM GIÁ TRỊ LỚN NHẤT - GIÁ TRỊ NHỎ NHẤT
 I: DẠNG 
-----------------------------------------------------------------------------------------------
Nếu a > 0 : Suy ra Khi 
Nếu a < 0 : 
Suy ra Khi 
Một số ví dụ:
Tìm GTNN của A = 2x2 + 5x + 7
Giải:A = 2x2 + 5x + 7 = =
 . 
 Suy ra .
Tìm GTLN của A = -2x2 + 5x + 7	
Giải: A = -2x2 + 5x + 7 = -=
 £ . 
Suy ra .
Tìm GTNN của B = 3x + y - 8x + 2xy + 16.
Giải: B = 3x + y - 8x + 2xy + 16 = 2(x - 2) + (x + y) + 8 ³ 8.
 Þ MinB = 8 khi : Û . 
Tìm GTLN của C = -3x - y + 8x - 2xy + 2.
Giải: C = -3x - y + 8x - 2xy + 2 = 10 - £ 10.
 Þ GTLNC = 10 khi: Û .
BÀI TẬP:
Tìm GTNN 
Tìm GTLN B = 1 + 3x - x2
Tìm GTLN D = 
 Tìm GTNN của F = x4 + 2x3 + 3x2 + 2x + 1.
Tìm GTNN của G = 
Tìm GTNN của M = x + 2y - 2xy + 2x - 10y.
Tìm GTNN C = 
 Tìm GTNN của N = (x +1) + ( x - 3) 
Tìm GTNN của K = x + y - xy +x + y
Bài tập:
Chứng minh rằng Biếu thức
P =
không phụ thuộc vào x.
Cho biểu thức M = .
Tìm tập xác định của M.
Tính giá trị của x để M = 0.
Rút gọn M.
Cho a,b,c là 3 số đôi một khác nhau. Chứng minh rằng :
Cho biểu thức : B = 
Rút gọn B
Chứng minh rằng : n8 + 4n7 + 6n6 + 4n5 + n4 16 với n Z
Rút gọn biểu thức : với x -3; x 3; y -2.
Cho Biếu thức : A = .
Tìm điều kiện có nghĩa và Rút gọn biểu thức A.
Tìm giá trị của x để A > 0.
Tìm giá trị của A trong trường hợp .
a.Thực hiện phép tính: 
a.A = .
b. Rút gọn C = .
Cho a,b,c là 3 số nhau đôi một.
Tính S = .
 Tính giá trị của biểu thức : biết:
Cho a + b + c = 1 và .
Nếu . Chứng minh rằng xy + yz + zx = 0.
b.Nếu a3 + b3 + c3 = 1. Tính giá trị của a,b,c
Cho Biếu thức : .
Tính giá trị của A khi a = -0,5.
Tính giá trị của A khi : 10a2 + 5a = 3.
 Chứng minh nếu xyz = 1 thì: .
Chứng minh đẳng thức sau: 
Thực hiện phép tính: .
Tính tổng : S(n) = .
 Rút gọn rồi tính giá trị của biểu thức :
A = .
Biết a là nghiệm của Phương trình : .
 Gọi a,b,c là độ dài 3 cạnh của tam giác biết rằng:
 Chứng minh rằng tam giác đó là tam giác đều.
 Chứng minh rằng nếu a,b là 2 số dương thỏa điều kiện: a + b = 1 thì : 
Thực hiện phép tính: 
A = 
 Rút gọn biểu thức : A = .
 Chứng minh rằng biểu thức sau luôn dương trong TXĐ: 
B = 
 Rút gọn rồi Tính giá trị biếu thức với x + y = 2007.
	A = .
 Cho 3 số a,b,c 0 thỏa mãn đẳng thức: .
Tính giá trị biểu thức P = .
Cho biểu thức : . Chứng minh rằng nếu :
 	x + y + z = 0 thì A = 1.

Tài liệu đính kèm:

  • docmot_so_bai_on_luyen_hoc_sinh_gioi_mon_toan_lop_8.doc