Giáo án Toán 8 - Phần II: Hình học

Giáo án Toán 8 - Phần II: Hình học

I. Mục tiêu:

 Qua bài này, từ tập hợp những hình do giáo viên tạo ra, hướng dẫn học sinh nắm được định nghĩa tứ giác, tứ giác lồi, tự tìm ra tính chất tổng các góc trong một tam giác.

 - Học sinh biết vẽ, biết tính số đo các góc của một tứ giác lồi.

 - Học sinh biết vận dụng các kiến thức trong bài vào các tình huống thực tiễn đơn giản.

II. Chuẩn bị:

 - GV: Bảng phụ vẽ hình 1, hình 3, hình 5, hình 8 SGK trang 64, 65, 66. Giáo án, thước thẳng.

 - HS: SGK, tập ghi chép, thước thẳng.

III. Tiến trình bài dạy:

Hoạt động 1: Giới thiệu chương I. (3phút)

 Ở chương trình lớp 7, các em đã học những nội dung cơ bản về tam giác. Lên lớp 8 các em sẽ học về các hình tứ giác, đa giác. Chương I của hình học 8 sẽ cho chúng ta hiểu về các khái niệm, tính chất của khái niệm, cách nhận biết, nhận dạng hình với các nội dung như : . (Yêu cầu học sinh mở SGK phần mục lục và đọc các nội dung của chương I phần hình học). Các kỹ năng như vẽ hình, tính toán đo đạc, gấp hình tiếp tục được rèn luyện - kỹ năng lập luận và chứng minh hình học được coi trọng.

 

doc 183 trang Người đăng tranhiep1403 Lượt xem 1723Lượt tải 3 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Toán 8 - Phần II: Hình học", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tuần: 01
Tiết : 01
PHẦN II. HÌNH HỌC.
Chương I. TỨ GIÁC
§1. TỨ GIÁC
I. Mục tiêu:
	Qua bài này, từ tập hợp những hình do giáo viên tạo ra, hướng dẫn học sinh nắm được định nghĩa tứ giác, tứ giác lồi, tự tìm ra tính chất tổng các góc trong một tam giác.
	- Học sinh biết vẽ, biết tính số đo các góc của một tứ giác lồi.
	- Học sinh biết vận dụng các kiến thức trong bài vào các tình huống thực tiễn đơn giản.
II. Chuẩn bị:
	- GV: Bảng phụ vẽ hình 1, hình 3, hình 5, hình 8 SGK trang 64, 65, 66. Giáo án, thước thẳng.
	- HS: SGK, tập ghi chép, thước thẳng.
III. Tiến trình bài dạy:
Hoạt động 1: Giới thiệu chương I. (3phút)
	Ở chương trình lớp 7, các em đã học những nội dung cơ bản về tam giác. Lên lớp 8 các em sẽ học về các hình tứ giác, đa giác. Chương I của hình học 8 sẽ cho chúng ta hiểu về các khái niệm, tính chất của khái niệm, cách nhận biết, nhận dạng hình với các nội dung như : .. (Yêu cầu học sinh mở SGK phần mục lục và đọc các nội dung của chương I phần hình học). Các kỹ năng như vẽ hình, tính toán đo đạc, gấp hình tiếp tục được rèn luyện - kỹ năng lập luận và chứng minh hình học được coi trọng.
Hoạt động 2: Định nghĩa (20phút)
Hoạt động của giáo viên
Hoạt động của học sinh
Nội dung
Các em quan sát các hình vẽ và trả lời câu hỏi:
* Trong những hình vẽ ở bên, những hình nào thoả mãn tính chất:
a/ Hình tạo bởi bốn đoạn thẳng.
b/ Bất kỳ hai đoạn thẳng nào cũng không nằm trên một đường thẳng. 
- Nhận xét sự khác nhau cơ bản giữa hình 1e và các hình còn lại?
* Một hình thoả mãn tính chất a và b đồng thời " khép kín" ta gọi là một hình tứ giác.
? Vậy tứ giác ABCD là hình như thế nào?
* Ta có: tứ giác ABCD là hình tạo bởi bốn đoạn thẳng AB, BC, CD, DA trong đó bất kỳ hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.
Mỗi em hãy vẽ một hình tứ giác vào vở và tự đặt tên.
? Một học sinh lên bảng vẽ hình.
? Tương tự như cách gọi tên của tam giác ta cũng cách gọi tên của tứ giác như thế nào?
* Trong đó A, B, C, D là các đỉnh của tứ giác. Các đoạn thẳng AB, BC, CD, DA là các cạnh của tứ giác.
?1 Các em quan sát và trả lời.
? Trong tất cả các tứ giác nêu ở trên, tứ giác nào thoả mãn thêm tính chất: " Nằm trên cùng một nửa mặt phẳng bờ là đường thẳng chứa bất kỳ cạnh nào của tam giác"
Tứ giác ABCD ở hình 1a là tứ giác lồi.
? Vậy tứ giác lồi là tứ giác phải thoả mãn điều kiện gì?
* Vậy tứ giác lồi là tứ giác .
Chú ý: từ đây về sau, nếu gọi tứ giác mà không nói gì thêm thì hiểu rằng đó là tứ giác lồi.
- Treo bảng phụ cho học sinh quan sát: các em thực hiện ?2 SGK trang 65.
Yêu cầu học sinh hiểu các định nghĩa mà không cần học sinh thuộc: Hai đỉnh kề nhau, hai đỉnh đối nhau, hai cạnh kề nhau, hai cạnh đối nhau.
* Hoàn chỉnh bài làm cho học sinh.
a) Hai đỉnh kề nhau :A và B, B và C, C và D, D và A.
 Hai đỉnh đối nhau: A và C, B và D.
b) Đường chéo: AC, BD.
c) Hai cạnh kề nhau: AB và BC, BC và CD, CD và DA.
 Hai cạnh đối nhau: AB và CD, AD và BC.
d) Góc: , 
 Hai góc đối nhau: và , và .
e) Điểm nằm trong tứ giác: M, P.
 Điểm nằm ngoài tứ giác: N, Q.
Hình thành khái niệm tứ giác.
 Các em thực hiện theo nhóm, mỗi nhóm thảo luận và một học sinh đại diện trình bày ý kiến nhóm của nhóm mình.
(- H. 1a, 1b,1c.
 - Hình 1e các đoạn thẳng không khép kín).
- Tứ giác ABCD là hình tạo bởi bốn đoạn thẳng AB, BC, CD, DA trong đó bất kỳ hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.
- Thực hiện:
M
N
P
Q
- Tứ giác ABCD hoặc Tứ giác BCDA, hay tứ giác CDBA, 
- Học sinh quan sát và trả lời: Hình 1a.
- Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kỳ cạnh nào của tứ giác.
- Các nhóm nhỏ cùng quan sát và thực hiện. Đại diện nhóm ghi vào bảng phụ ý kiến của nhóm.
- Hai đỉnh cùng thuộc một cạnh gọi là hai đỉnh kề nhau.
- Hai đỉnh không kề nhau gọi là hai đỉnh đối nhau.
- Hai cạnh cùng xuất phát tại một đỉnh gọi là hai cạnh kề nhau.
- Hai cạnh không kề nhau gọi là hai cạnh đối nhau.
 TỨ GIÁC 
1. Định nghĩa: (SGK)
B
A
D
C
H. 1b
A
B
C
D
H. 1a
°QQ
B
D
A
C
H. 1d
A
B
C
D
H. 1c
D
A
B
C
H. 1e
 Tứ giác ABCD là hình tạo bởi bốn đoạn thẳng AB, BC, CD, DA trong đó bất kỳ hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.
Đọc tên: Tứ giác ABCD hay tứ giác BCDA, hay tứ giác CDBA, 
- A, B, C, D là các đỉnh của tứ giác.
- Các đoạn thẳng AB, BC, CD, DA là các cạnh của tứ giác.
(Bảng phụ)
Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng, có bờ là đường thẳng chứa bất kỳ cạnh nào của tứ giác.
A
B
D
C
· Q
· N
· M
· P
Bài tập ?2 SGK 
a) Hai đỉnh kề nhau: A và B,..
 Hai đỉnh đối nhau: A và C, 
b) Đường chéo (đoạn thẳng nối hai đỉnh không kề nhau): AC, 
c) Hai cạnh kề nhau: AB và BC, .
 Hai cạnh đối nhau: AB và CD,....
d) Góc: , ..
 Hai góc đối nhau: và , ..
e) Điểm nằm trong tứ giác: M, .
 Điểm nằm ngoài tứ giác: N, .
Hoạt động 3: (7phút)
TỔNG CÁC GÓC CỦA MỘT TỨ GIÁC
Hoạt động 3: 
Yêu cầu học sinh thực hiện ?3 SGK trang 65.
? Nhắc lại định lý tổng các góc trong của một tam giác?
? Vẽ tứ giác ABCD tuỳ ý. Dựa vào định lý về tổng ba góc của một tam giác, hãy tính tổng: 
? Vậy tổng các góc trong một tứ giác có bằng 1800 không? Có thể bằng bao nhiêu độ?
( Có thể hướng dẫn học sinh thực hiện).
Ta có thể chia tứ giác ABCD thành hai tam giác nào?
? Tìm tổng các góc trong hai tam giác đó? 
? Để tìm tổng các góc của tứ giác ABCD thông qua hai tam giác ta thực hiện như thế nào?
? Vậy tổng các góc trong tam giác bằng bao nhiêu độ?
Ta có định lý tổng các góc trong một tứ giác bằng 3600.
Các nhóm thực hiện, đại diện nhóm trả lời.
- Tổng ba góc của một tam giác bằng 3600.
A
B
C
D
- Vẽ tứ giác ABCD
- Tổng các góc trong một tứ giác có không bằng 1800.
- Một học sinh vẽ đường chéo AC.
- Tứ giác ABCD chia thành hai tam giác ABC và ADC.
- Cộng các góc của hai tam giác trên lại.
- Tổng các góc trong của một tứ giác bằng 3600.
A
B
C
D
1
2
1
2
2. Tổng các góc trong của một tứ giác. 
 Trong tứ giác ABCD có hai tam giác:
 có 
 có 
Nên tứ giác ABCD có:
hay 
Định lý: Tổng các góc trong của một tứ giác bằng 3600.
Hoạt động 4: (13 phút)
LUYỆN TẬP CỦNG CỐ.
- Các em xem H. 6 SGK trang 66. ( treo bảng phụ cho học sinh quan sát).
Hoàn chỉnh bài giải cho học sinh.
? Bốn góc của một tứ giác có thể đều nhọn hoặc đều tù hoặc đều vuông không?
- Cho học sinh thực hiện bài tập 2a SGK trang 66.
( Đề bài đưa vào bảng phụ)
Lưu ý học sinh: góc ngoài là góc kề bù với một góc của tứ giác.
Nêu câu hỏi củng cố:
- Định nghĩa tứ giác ABCD.
- Thế nào gọi là tứ giác lồi?
- Phát biểu định lý về tổng các góc của một tứ giác.
- Cho học sinh nhận xét bài làm trên bảng.
- Các nhóm cùng quan sát và thực hiện. Đại diện mỗi nhóm học sinh trả lời miệng, mỗi học sinh làm từng phần.
a/
x=3600-(1100+1200+800) =500.
b/
x=3600-(900+900+900) =900
c/
x=3600-(900+900+650) =1150
d/
x=3600-(750+1200+900) =750
a/
b/ 10x = 3600
 x = 360
- Một tứ giác không thể có cả bốn góc đều nhọn vì như thế thì tổng số đo bốn góc đó nhỏ hơn 3600, trái với định lý.
- Một tứ giác không thể có cả bốn góc đều tù vì như thế thì tổng bốn góc lớn hơn 3600, trái với định lý.
- Một tứ giác có thể có cả bốn góc vuông, khi đó thì tổng số đo các góc bằng 3600. thoả mãn định lý.
- Các học sinh làm bài tập theo nhóm.
Đại diện nhóm trình bày bảng cách tìm góc D ngoài.
Trả lời các câu hỏi củng cố:
- Tứ giác ABCD là hình .
- Tứ giác lồi là tứ giác.
- Tổng các góc của một tứ giác bằng 3600.
- Học sinh nhậbn xét bài làm của học sinh trên bảng.
A
C
B
D
1200
800
1100
Bài tập 1 SGK trang 66.
E
F
G
H
x
P
S
R
Q
x
x
 950
 650
B
D
A
E
650
x
 Hình 5
I
K
M
N
600
1050
x
 a
M
N
Q
P
 3x
 2x
 4x
 x
 b
 Hình 6
Bài tập 2 SGK.
A
B
C
D
1200
750
1
1
1
1
 a
- Ta có: Tứ giác ABCD có 
Nên: 750 + 900+1200+=3600
 2850 + = 3600.
 = 3600-2850.
 = 750.
Có += 1800.
 = 1800- = 1800- 750
 = 1050.
Các góc ngoài khác tìm tương tự như trên.
Hoạt động 5:
 HƯỚNG DẪN VỀ NHÀ ( 2 phút)
	- Các em học thuộc các định nghĩa, định lý trong bài.
	- Chứng minh được định lý Tổng các góc của tứ giác.
	- Làm các bài tập về nhà: 2, 3, 4, 5 SGK trang 66, 67.
	- Đọc bài " Có thể em chưa biết" giới thiệu về tứ giác Long Xuyên trang 68.
	- Xem trước bài mới: Hình thang.
----------------------------------------------------
NỘI DUNG CẦN BỔ SUNG 
----------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ... á, học sinh sẵn sàng học tốt
2 . KIỂM TRA BÀI CŨ : Nêu công thức tính thể tích hình chóp
Đáp: V = S.h (S là diện tích đáy, h là chiều cao hình chóp.
3 . DẠY BÀI MỚI : LUYỆN TẬP BÀI 6
HOẠT ĐỘNG CỦA THẦY
HOẠT ĐỘNG CỦA TRÒ
5
O
H
D
C
B
A
S
5
 LUYỆN TẬP
47/124(SGK) Trong các miếng bìa ở hình 134, miếng nào khi gấp và dán lại thì được một hình chóp đều?
48/125(SGK) 
Tính diện tích toàn phần của:
a) Hình chóp tứ giác đều, biết cạnh đáy a = 5cm, cạnh bên b = 5cm,
4,33
b) Hình chóp lục giác đều, biết cạnh đáy a = 6cm, cạnh bên b = 5cm,
1,73
Tính KH
KH2 = 
49/125(SGK) Tính diện tích xung quanh của các hình chóp tứ giác đều sau đây(h.135)
50/125(SGK)
a) Tính thể tích của hình chóp đều (h.136)
b) Tính diện tích xung quanh của hình chóp cụt đều (137)
 LUYỆN TẬP
47/124(SGK) Đáp:
Muốn biết tấm bìa nào gấp dán lại được một hình chóp đều ta cần xem các tam giác trong hình có phải là tam giác cân bằng nhau hay không?
Ta thấy chỉ có miếng bìa số 4 sau khi gấp dán lại cho ta hình hình chóp đều.
48/125(SGK) Đáp:
48a) Tính SH 
 SH2 = SC2-HC2 = 52 - (2,5)2 = 18,75
=> SH = 4,33 (cm)
 SXq= SSBC.4= (.5.4,33).4=43,3(cm2)
SĐáy= AB.BC= 5.5 = 25 (cm2)
STP = SXq + SĐáy= 43,3+25=68,3(cm2)
48b) Tính SK
 SK2 = SN2-NK2 = 52 - 32 = 16
=> SK = = 4 (cm)
SXq= SSNM.4= (.6.4).6= 72(cm2)
Tính diện tích một tam giác MHN
SHMN=MN.KH=.a.=
SĐáy= .6
SĐáy= =93,42 (cm2)
STP = SXq + SĐáy= 72+93,42 =165,42(cm2)
49/125(SGK) Đáp
49a)
Sxq = (.6.10).4= 120(cm2)
49b)
Sxq = (.7,5.9,5).4= 142,5(cm2)
49c) Tính trung đoạn d
 d2 = 172 - 82 = 289- 64 = 225
=> d = = 15 (cm)
Sxq = (.16.15).4= 480(cm2)
50a/125(SGK) Đáp:
V = (6,5. 6,5).12 = 169 (cm3)
50b)
SXq = {(2 + 4).3,5}.4
 = 10,5 . 4
SXq = 42 (cm2)
4 . CỦNG CỐ: Về nhà học BÀI 9 THỂ TÍCH CỦA HÌNH CHÓP Trang 122
TIẾT:69 ÔN TẬP CHƯƠNG IV CHƯƠNG IV
I MỤC TIÊU
Học sinh cần: -Hệ thống hoá các kiến thức về hình lăng trụ đứng và hình chóp đều đã học trong chương . - Vận dụng các công thức đã học vào các dạng bài tập (nhận biết tính toán) thấy được mối liện hệ giữa các kiến thức học được với thực tế
IICHUẨN BỊ: 
L Giáo viên: G-án, các hình đã học qua
JHọc sinh: Tập SGK, dụng cụ học tập, các hình vẽ sẵn
III TIẾN TRÌNH BÀI GIẢNG 
1. ỔN ĐỊNH LỚP : điểm danh, học tập tốt 
2. KIỂM TRA BÀI CŨ 
50/125 (hình 136) Tính thể tích hình chóp đều 
AO = 12cm , BC = 6,5cm Đáp : V=.(6,5. 6,5).12 = 169(cm3)
3.DẠY BÀI MỚI : ÔN TẬP CHƯƠNG IV
HOẠT ĐỘNG CỦA THẦY
HOẠT ĐỘNG CỦA TRÒ
Câu hỏi :2 / 126
a)Hình lập phương có mấy mặt, mấy cạnh, mấy đỉnh? Các mặt là những hình gì?
b)Hình chữ nhật có mấy mặt, mấy cạnh, mấy đỉnh?
c)Hình lăng trụ đứng tam giác có mấy cạnh, mấy đỉnh, mấy mặt?
 Hãy gọi tên các hình chóp theo những hình vẽ dưới đây:
Đáp 2/126
a)Có 6 mặt , 24 cạnh, 8 đỉnh, Các mặt đều là những hình vuông
b) Có 6 mặt , 24 cạnh, 8 đỉnh,
c) Có 9 cạnh, 6 đỉnh, 5 mặt
HS1 Đáp : h.138 Hình chóp tam giác
HS2 Đáp : h.139 Hình chóp tứ giác
HS3 Đáp : h.140 Hình chóp ngủ giác
51/127
Đáy
Chu vi đáy
Sxung quanh
Stoàn phần
V (thể tích)
Hình vuông
4a
4ah
4ah + 2a2
a2.h
Tam giác đều
3a
3ah
3ah + 
Lục giác đều
6a
6ah
6ah + .a2
Thang cân
5a
5ah
5ah + a2
.a2.h
Hình thoi
20a
20ah
20ah + 48a2
24a2.h
52/128 Tính diện tích toàn phần của thanh gỗ như ở hình 142 (mặt trước, mặt sau của thanh gỗ là những hình thang cân, bốn mặt còn lại đều là hình chữ nhật, cho biết ) 
53/128 Thùng chứa của xe ở hình 143 
có dạng lăng trụ đứng tam giác, các kích thước cho trên hình . Hỏi dung tích của thùng chứa là bao nhiêu? 
54/128 Người ta muốn đổ một tấm bê tông dày 3cm, bề mặt của tấm bê tông có các kích thước như ở hình144.
a)Số bê tông cần phải có là bao nhiêu?
b)Cần phải có bao nhiêu chuyến xe để chở số bê tông cần thiết đến chỗ đổ bê tông, nếu mỗi xe chứa được 0,06m3? (không tính số bê tông dư thừa hoặc rơi vãi)
52/128 Đáp : Tính HB
HB = cm
Tính AH 
AH2 = 3,52 - 1,5 
 = 12,25 - 2,25
AH = cm
SABCD = S1 = cm2
SAA'B'B = S2 = 3,5 . 11,5 . 2 = 80,2cm2
SADD'A' = S3 = 3 . 11,5 = 34,5 cm2
SCC'B'B = S4 = 6 . 11,5 = 69cm2
STP = S1 + S2 + S3 + S4 
 = 28,44 + 80,2 + 34,5 + 69 
STP = 212,44cm2
53/128 đáp 
Thể tích của thùng chứa là 
 V = (80.60).50
 V = 120 000(cm3)
 = 120(dm3)
 = 120(lít)
54/128 Đáp :
a)Bổ sung hình đã cho thành một hình chữ ABCD 
SABCD= S = 5,10 . 4,20 = 21,42(cm2)
SDEF = S1 = 1,54(cm2)
SABCFE = S2 = S - S1
 = 21,42 - 1,54 
 = 19,88(m2)
Đổi ra m 
3cm = 0,03m
Số lượng bê tông cần là
V = S2 . dày 
 = 19,88 . 0,03 = 0,5964(m3)
54b) Số chuyến xe cần dùng 
 0,5964 : 0,06 = 9,94 10 (chuyến)
4.CỦNG CỐ: Về nhà học tất cả diện tích các hình 
Về nhà học bài : 55,56,57,58,59 Trang 129
TIẾT 70 KIỂM TRA CHƯƠNG IV Lớp 8
 Điểm Họ và tên : 
Bài 1 (2đ)
Cho hình hộp chữ nhật ABCD.A'B'C'D' Phát biểu nào sau đây là đúng:
A. Có tất cả ba cặp mặt đối diện.
B. Có bốn mặt có diện tích bằng nhau.
C. AB//BC
D. Nếu B'C' mp(ABB'A') thì B'C'song song với DC.
Bài 2 (2đ) Câu nào đúng (khoanh tròn) 
Cho hình hộp chữ nhật có độ dài của ba cạnh xuất phát từ một đỉnh lần lượt là 8cm, 6cm, 10cm. Kết quả nào sau đây là đúng?
A. Diện tích xung quanh hình hộp là 480cm2
B. Diện tích toàn phần của hình hộp là 480cm2
C. Diện tích toàn phần của hình hộp là 576cm2
D. Diện tích xung quanh hình hộp là 560cm2
Bài 3 (2đ) Chọn phát biểu đúng trong các phát biểu sau:
Nếu hình chóp có đáy là hình thoi, chân đường cao trùng với tâm hình thoi 
 thì nó là hình chóp đều
Nếu hình chóp có đáy là hình chữ nhật, chân đường cao trùng với giao 
 điểm của hai đường chéo thì nó là hình chóp đều
C. Nếu hình chóp có đáy là hình vuông , thì nó là hình chóp đều
Nếu hình chóp có đáy là hình tam giác đều, chân đường cao trùng với tâm 
 của tam giác thì nó là hình chóp đều.
Bài 4 (4đ) Cho một hình lập phương có diện tích toàn phần là 600cm2.
a)Tính độ dài cạnh của hình lập phương
b)Tính thể tích của hình lập phương
TIẾT 70 ĐÁP ÁN KIỂM TRA CHƯƠNG IV Lớp 8
 Điểm Họ và tên : 
Bài 1 (2đ)
Cho hình hộp chữ nhật ABCD.A'B'C'D' Phát biểu nào sau đây là đúng:
A. Có tất cả ba cặp mặt đối diện.
B. Có bốn mặt có diện tích bằng nhau.
C. AB//BC
D. Nếu B'C' mp(ABB'A') thì B'C'song song với DC.
Bài 2 (2đ) Câu nào đúng (khoanh tròn) 
Cho hình hộp chữ nhật có độ dài của ba cạnh xuất phát từ một đỉnh lần lượt là 8cm, 6cm, 10cm. Kết quả nào sau đây là đúng?
A.Diện tích xung quanh hình hộp là 480cm2
B.Diện tích toàn phần của hình hộp là 480cm2
C. Diện tích toàn phần của hình hộp là 576cm2
D. Diện tích xung quanh hình hộp là 560cm2
Bài 3 (2đ) Chọn phát biểu đúng trong các phát biểu sau:
A.Nếu hình chóp có đáy là hình thoi, chân đường cao trùng với tâm hình thoi thì nó là hình chóp đều
B. Nếu hình chóp có đáy là hình chữ nhật, chân đường cao trùng với giao điểm của hai đường chéo thì nó là hình chóp đều
C. Nếu hình chóp có đáy là hình vuông , thì nó là hình chóp đều
D. Nếu hình chóp có đáy là hình tam giác đều, chân đường cao trùng với tâm của tam giác thì nó là hình chóp đều.
Bài 4 (4đ) Cho một hình lập phương có diện tích toàn phần là 600cm2.
a)Tính độ dài cạnh của hình lập phương
b)Tính thể tích của hình lập phương
Đáp :
4a)Tính độ dài cạnh hình lập phương
Gọi a là độ dài cạnh hình lập phương (a>0)
Diện tích toàn phần hình lập phương:
 STP = SXQ + 2.S 
 600 = 4.a.a + 2.a2
 600 = 6a2
 a2 = 100
 a = 10(cm)
4b) thể tích hình lập phương
V = a3 = 103 = 1000(cm3)
TIẾT: 71-72 ÔN TẬP HỌC KỲ II CHƯƠNG IV
I MỤC TIÊU
Học sinh cần: Hiểu và vận dụng được :-Định nghĩa đa giác lồi, đa giác đều.
-Các công thức tính diện tích: Hình chữ nhật, hình vuông, hình bình hành, tam giác,hình thang, hình thoi. 
IICHUẨN BỊ: 
L Giáo viên: G-án, các hình đã học qua
JHọc sinh: Tập SGK, dụng cụ học tập, giấy kẻ ô vuông 
III TIẾN TRÌNH BÀI GIẢNG 
1. ỔN ĐỊNH LỚP : điểm danh, học tập tốt 
2. KIỂM TRA BÀI CŨ 
Viết công thức tính Thể tích hình hôp chữ nhật 
 Đáp : V = a.b.c (a,b,c cùng đơn vị độ dài) 
3.DẠY BÀI MỚI : ÔN TẬP HỌC KỲ II
HOẠT ĐỘNG CỦA THẦY
HOẠT ĐỘNG CỦA TRÒ
Hoạt động 1
2/132 
Cho hình thang ABCD (AB//CD)Có hai đường chéo cắt nhau ở O và tam giác ABO là tam giác đều. Gọi E,F,G theo thứ tự là trung điểm của các đoạn thẳng OA, OD, và BC. Chứng minh rằng tam giác EFG là tam giác đều.
Hoạt động 2
3/132 Tam giác ABC có các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K. Tam giác ABC phải có điều kiện gì thì tứ giác BHCK là
a)Hình thoi?
b)Hình chữ nhật?
Hoạt động 3
5/133 Trong tam giác ABC, các đường trung tuyến AA' và BB' cắt nhau ở G. Tính diện tích tam giác ABC biết rằng diện tích tam giác ABG bằng S
2/132 Đáp :
Chứng minh EFG đều
AOB đều è COD đều (O1=D1=600)
èBE AC è E1 = 900
èCF OD è F1 = 900
xét AOB và COD
 OA = OB (gt)
 O3 = O4 (Cùng bằng O1 = O2=600)
 OD = OC (ODC đều)
è AOB = COD (cgc)
è AD = BC
Trong AOD EF là đường trung bình
 EF = AD è EF = BC (1)
BCF vuông tại F có FG = BC (2)
BEC vuông tại E có EG = BC (3)
Từ (1) , (2) và (3)
è EF = FG = EG 
è EFG đều
3/132 Đáp :
 BHCK là hình thoi khi
BD AC BH // KC
AK AC 
EC AB CH // BC
KB AB 
 BHCK là hình bình hành
Gọi M là trung điểm của 2 đường chéo HK và BC
3a)
BHCK là hình thoi HM BC
AM BC Ba điểm A,H,M thẳng hàng 
Do đó ABC phải là tam giác cân
3b)BHCK là hình chữ nhật BHHC
ta lại có 
BE HC
BD AC 
 nên BH HC H,D,E trùng nhau
Khi đó H, D.E cũng trùng với A
Vậy ABC phải là tam giác vuông
5/133 Đáp :
Gọi H,K lần lượt là hình chiếu của G và C trên đường thẳng BC
Ta có GKC' CHC' do đó :
 CH = 3GK
Diện tích tam giác ABC
SABC = AB . CH 
 = AB . 3GK
 = 3.( AB.GK)
SABC = 3.S
4.CỦNG CỐ: Về nhà học tất cả diện tích các hình 
Về nhà học bài : 6,7,8,9,10 trang 133

Tài liệu đính kèm:

  • docgiao an toan 8 ca nam.doc