I. Mục tiêu :
1. Kiến thức : Nắm vững định nghĩa về hình thang cân và các tính chất.
2. Kỹ năng : Biết vẽ và nhận dạng hình thang cân. Biết vận dụng định nghĩa và tính chất htc vào việc giải toán.
3. Thái độ : Thấy được các hình thang cân trong thực tế.
II. Chuẩn bị :
GV : Sgk, giáo án, phấn, thước, bảng phụ.
HS : Chuẩn bị bài trước ở nhà.
III. Nội dung :
Tuần 2 Tiết 4 Ngày dạy : LUYỆN TẬP I. Mục tiêu : 1. Kiến thức : Nắm vững định nghĩa về hình thang cân và các tính chất. 2. Kỹ năng : Biết vẽ và nhận dạng hình thang cân. Biết vận dụng định nghĩa và tính chất htc vào việc giải toán. 3. Thái độ : Thấy được các hình thang cân trong thực tế. II. Chuẩn bị : GV : Sgk, giáo án, phấn, thước, bảng phụ. HS : Chuẩn bị bài trước ở nhà. III. Nội dung : TG Hoạt động Giáo viên Hoạt động Học sinh Nội dung 1’ 10’ 25’ 10’ 5’ 10’ 8’ 1’ 1. Ổn định lớp : 2. Kiểm tra bài cũ : Gọi hs nêu định nghĩa và các tính chất của hình thang cân. Vẽ hình thang cân ? -Cho hình thang cân ABCD có A=120o. Tíng số đo các góc còn lại 3. Luyện tập : CHoạt động 1: Giải bài tập 16 trang75 SGK Trước hết hãy chứng minh để chỉ ra AD =AE hay . Từ đó suy ra AED = ADE, suy ra BED = CDE ? Xét và có những cạnh nào bằng nhau, góc nào bằng nhau ? Tiếp theo các em hãy chứng minh BEDC là hình thang. Để chứng minh BEDC là hình thang ta cần phải chứng minh điều gì ? Trước hết hãy chứng minh ? Hãy chỉ ra ? Từ (1)(2) suy ra điều gì ? Hình thang có hai đường chéo bằng nhau thì ntn ? Nhận xét BE và AC ? Chứng minh BE=BD ? Trước hết hãy chứng minh BDE=BED ? Từ những ý trên hãy chứng minh ABCD là hình thang cân? 4. Củng cố : Nhắc lại định nghĩa, tính chất, các dấu hiệu nhận biết hình thang cân ? 5. Dặn dò : Làm các bài tập còn lại - Hình thang cân là hình thang có hai góc kề một đáy bằng nhau. -Trong hình thang cân hai cạnh bên bằng nhau, hai đường chéo bằng nhau. Ta có : A+D=180o ( AB//CD ) HS lên bảng trình bày lời giải : Xét và có : A chung B1=C1(BD, CE là đpg của 2 góc đáy tgc ABC ) AB=AC Hai cạnh đối song song, để chứng minh hai cạnh đối song song ta chứng minh hai góc so le trong bằng nhau, hai góc đồng vị bằng nhau hoặc hai góc trong cùng phía bù nhau Ta có : Mà ACD = BDC ( gt ) nên BAC = ABD Mặc khác : Từ (1)(2) suy ra : AC=BD Hình thang này cân Ta có : Mà AC=BD (gt) nên BE=BD hay Ta có:BDE=BED Mà BED=ACD (AB//CD,đv) nên BDE=ACD Xét và có : ACD=BDC(cmt) AC=BD(gt) CD chung Là hình thang có hai góc kề một đáy bằng nhau Trong hình thang cân hai cạnh bên bằng nhau, hai đường chéo bằng nhau Hình thang có hai góc kề một đáy bằng nhau hoặc hai đường chéo bằng nhau là htc Bài tập 16 trang 75 SGK GT cân tại A BD, CE là phân giác KL BEDClàhtc (ED=BE=CD) Cm : Xét và có : A chung B1=C1(BD, CE là đpg của 2 góc đáy tgc ABC ) AB=AC Xét BEDC : B+BED+CDE +C=360o Mà nên : B+BED=180o ABCD là hình thang Mặc khác : B=C nên BEDC là hình thang cân GT ABCD là hình thang (AB//CD) ACD=BDC KL ABCD là htc Cm : Ta có : Mà ACD = BDC ( gt ) nên BAC = ABD Mặc khác : Từ (1)(2) suy ra : AC=BD Vậy ABCD là hình thang cân 18 GT ABCD là hình thang AC=BD BE//AC KL Cm : a. Ta có : Mà AC=BD (gt) nên BE=BD hay b. Ta có:BDE=BED Mà BED=ACD (AB//CD,đv) nên BDE=ACD Xét và có : ACD=BDC(cmt) AC=BD(gt) CD chung
Tài liệu đính kèm: