I) Mục tiêu :
- Hệ thống kiến thức cơ bản trong chương I
- Rèn luyện kĩ năng giải các loại bài tập cơ bản trong chương
II) Chuẩn bị của giáo viên và học sinh :
GV : Giáo án
HS : Ôn tập theo 5 câu hỏi ôn tập chương I ở SGK , Giải các bài tập đã ra về nhà ở tiết trước
III) Tiến trình dạy học:
Tiết 20 Ngày dạy: 04/11/09 ôn tập chương I (T2) I) Mục tiêu : - Hệ thống kiến thức cơ bản trong chương I - Rèn luyện kĩ năng giải các loại bài tập cơ bản trong chương II) Chuẩn bị của giáo viên và học sinh : GV : Giáo án HS : Ôn tập theo 5 câu hỏi ôn tập chương I ở SGK , Giải các bài tập đã ra về nhà ở tiết trước III) Tiến trình dạy học: Hoạt động của giáo viên Hoạt động của học sinh Hoạt động 1 : Kiểm tra bài cũ HS 1: Phát biểu quy tắc nhân đơn thức với đa thức ? Giải bài tập 75a/ 33 HS 2 : Phát biểu quy tắc nhân đa thức với đa thức ? Giải bài tập 76a/ 33 HS 3 : Viết bảy hằng đẳng thức đáng nhớ ? Giải bài tập 77/ 33 HS 4 : 3) Khi nào thì đơn thức A chia hết cho đơn thưc B ? 4) Khi nào thì đa thức A chia hết cho đơn thưc B ? 5) Khi nào thì đa thức A chia hết cho đa thưc B ? Giải bài tập 78 / 33 Hoạt động 2 : luyện tập Một em lên bảng giải bài tập 79 a trang 33 Các em còn lại làm bài 79 vào vở Một em lên bảng giải bài tập 79 b trang 33 Một em lên bảng giải bài tập 79 c trang 33 Một em lên bảng giải bài tập 81a trang 33 Một em lên bảng giải bài tập 81b trang 33 Một em lên bảng giải bài tập 81c trang 33 Hướng dẫn về nhà : Ôn lại luý thuyết của chương Giải các bài tập còn lại phần ôn tập chương Chuẩn bị tiết sau kiểm tra 1 tiết 75 / 33 Làm tính nhân : a) 5x2. ( 3x2 – 7x + 2 ) Giải a) 5x2. ( 3x2 – 7x + 2 ) = 15x4 – 35x3 + 10x2 76 / 33 Làm tính nhân : ( 2x2 – 3x )( 5x2 – 2x + 1 ) Giải a) ( 2x2 – 3x )( 5x2 – 2x + 1 ) = 2x2( 5x2 – 2x + 1 ) – 3x( 5x2 – 2x + 1 ) = 10x4 – 4x3 + 2x2 – 15x3 + 6x2 – 3x = 10x4 – 19x3 + 8x2 – 3x 77 / 33 Tính nhanh giá trị của biểu thức: M = x2 + 4y2 – 4xy tại x = 18 và y = 4 N = 8x3 – 12x2y + 6xy2 – y3 tại x = 6 và y = -8 Giải M = x2 + 4y2 – 4xy = ( x – 2y )2 Thay x = 18 và y = 4 vào biểu thức trên ta có : ( x – 2y )2 = ( 18 – 2.4 )2 = ( 18 – 8 )2 = 102 = 100 Vậy khi x = 18 và y = 4 thì M = 100 N = 8x3 – 12x2y + 6xy2 – y3 = ( 2x – y )3 Thay x = 6 và y = -8 vào biểu thức trên ta có: ( 2x – y )3 = [2.6 – (-8)]3 = (12 + 8)3 = 203 N = 8000 3) Đơn thức A chia hết cho đơn thưc B khi mỗi biến của B đều là biến của A và số mũ không lớn hơn số mũ của nó trong A 4) Đa thức A chia hết cho đơn thưc B khi các hạng tử của đa thức A đều chia hết cho đơn thức B 5) Đa thức A chia hết cho đa thưc B khi tồn tại đa thức Q sao cho A = B.Q 78 / 33 Rút gọn các biểu thức : ( x + 2 )( x – 2 ) – ( x – 3 )( x + 1 ) ( 2x + 1 )2 + ( 3x – 1 )2 + 2( 2x + 1 )( 3x – 1 ) Giải a) ( x + 2 )( x – 2 ) – ( x – 3 )( x + 1 ) = x2 – 4 – ( x2 + x – 3x – 3 ) = x2 – 4 – x2 – x + 3x + 3 = 2x – 1 ( 2x + 1 )2 + ( 3x – 1 )2 + 2( 2x + 1 )( 3x – 1 ) = [( 2x + 1 ) + ( 3x – 1 )]2 = (2x + 1 + 3x – 1)2 = ( 5x )2 = 25x2 79 / 33 Phân tích các đa thức sau thành nhân tử : x2 – 4 + ( x – 2 )2 x3 – 2x2 + x – xy2 x3 – 4x2 – 12x + 27 Giải x2 – 4 + ( x – 2 )2 = ( x + 2 )( x – 2 ) + ( x – 2 )2 = ( x – 2 )( x + 2 + x – 2 ) = 2x( x – 2 ) x3 – 2x2 + x – xy2 = x( x2 – 2x + 1 – y2 ) = x[( x2 – 2x + 1 ) – y2 ) = x[( x – 1 )2 – y2 ] = x( x – 1 + y)( x – 1 – y) x3 – 4x2 – 12x + 27 = x3 + 27 – 4x( x + 3 ) = ( x + 3 )( x2 – 3x + 9 ) – 4x( x + 3 ) = ( x – 3 )( x2 – 3x + 9 – 4x ) = ( x – 3 )( x2 – 7x + 9 ) 81 / 33 Tìm x : Giải x( x2 – 4 ) = 0 x( x + 2 )( x – 2 ) = 0 x = 0 hoặc x + 2 = 0 hoặc x – 2 = 0 x = 0 hoặc x = -2 hoặc x = 2 ( x + 2 )2 – ( x – 2 )( x + 2 ) = 0 ( x + 2 )[ x + 2 – ( x – 2 )] = 0 ( x + 2 )( x + 2 – x + 2 ) = 0 ( x + 2 )4 = 0 x + 2 = 0 x = -2 x + 2x2 + 2x3 = 0 x( 1 +2x + 2x2 ) = 0 x( 1 + x)2 = 0 x = 0 hoặc 1 + x = 0 x = 0 hoặc x = –
Tài liệu đính kèm: