Giáo án Hình học Lớp 8 - Chương trình cơ bản - Năm học 2012-2013 - Nguyễn Thị Thanh Nhàn

Giáo án Hình học Lớp 8 - Chương trình cơ bản - Năm học 2012-2013 - Nguyễn Thị Thanh Nhàn

GV: Hãy lấy mép thước kẻ lần lượt đặt trùng lên mỗi cạch của tứ giác ở H1 rồi quan sát

- H1(a) luôn có hiện tượng gì xảy ra ?

- H1(b) (c) có hiện tượng gì xảy ra ?

- GV: Bất cứ đương thẳng nào chứa 1 cạnh của hình H1(a) cũng không phân chia tứ giác thành 2 phần nằm ở 2 nửa mặt phẳng có bờ là đường thẳng đó gọi là tứ giác lồi.

- Vậy tứ giác lồi là tứ giác như thế nào ?

+ Trường hợp H1(b) & H1 (c) không phải là tứ giác lồi

* Hoạt động 3:)Tổng các góc trong của tứ giá các khái niệm cạnh kề đối, gócdối góc ngoài đường chéo

GV: Vẽ H3 và giải thích khái niệm:

GV: Không cần tính số mỗi góc hãy tính tổng 4 góc

Â+ (độ)

- Gv: ( gợi ý hỏi)

+ Tổng 3 góc của 1 là bao nhiêu độ?

+ Muốn tính tổng Â+ (độ) ( mà không cần đo từng góc ) ta làm ntn?

+ Gv chốt lại cách làm:

- Chia tứ giác thành 2 có cạnh là đường chéo

- Tổng 4 góc tứ giác = tổng các góc của 2 ABC & ADC Tổng các góc của tứ giác bằng 3600

- GV: Vẽ hình & ghi bảng

 

doc 150 trang Người đăng tuvy2007 Lượt xem 604Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Hình học Lớp 8 - Chương trình cơ bản - Năm học 2012-2013 - Nguyễn Thị Thanh Nhàn", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 Gi¸o ¸n H×nh Häc 8 - Ch­¬ng1: Tø Gi¸c
 Ch­¬ng I: Tø GI¸C
I/. Môc tiªu cña ch­¬ng:
	a, KiÕn thøc: HS nắm vững các định nghĩa về tứ giác, tứ giác lồi, các khái niệm : Hai đỉnh kề nhau, hai cạnh kề nhau, hai cạnh đối nhau, điểm trong, điểm ngoài của tứ giác & các tính chất của tứ giác. Tổng bốn góc của tứ giác là 3600.
HS nắm vững các định nghĩa về hình thang , hình thang vuông các khái niệm : cạnh bên, đáy , đường cao của hình thang
- HS nắm vững các đ/n, các t/c, các dấu hiệu nhận biết về hình thang cân ,h×nh b×nh hµnh,h×nh chö nhËt ,h×nh thoi
	b, Kü n¨ng:HS tính được số đo của một góc khi biết ba góc còn lại, vẽ được tứ giác khi biết số đo 4 cạnh & 1 đường chéo.
- Nhận biết hình thang hình thang cân, biết vẽ hình thang cân, h×nh b×nh hµnh,h×nh chö nhËt ,h×nh thoi
Biết sử dụng định nghĩa, các tính chất vào chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau dựa vào dấu hiệu đã học. Biết chứng minh 1 tứ giác là hình thang cân theo điều kiện cho trước. Rèn luyện cách phân tích xác định phương hướng chứng min h. 
BiÕt sö dông c¸c céng cô vÏ, ®o. 
	c, Th¸i ®é: Häc sinh b­íc ®Çu lµm quen víi c¸c ho¹t ®éng h×nh häc. biÕt c¸ch tù häc h×nh häc theo s¸ch gi¸o khoa. RÌn luyÖn tÝnh cÈn thËn chÝnh x¸c khi vÏ vµ ®o, biÕt lùa chän kÕt qu¶ thÝch hîp, lùa chän gi¶i ph¸p hîp lý khi gi¶i to¸n.
 	Rèn tính khoa học, chính xác, cẩn thận. Tư duy lô gíc, sáng tạo.
II/. Ph­¬ng ph¸p:
- D¹y häc "§Æt vµ gi¶i quyÕt vÊn ®Ò"
- H¹y häc hîp t¸c trong nhãm nhá.
III/. §Þnh h­íng thiÕt bÞ d¹y häc:
	+ B¶ng nhãm, Th­íc th¼ng, Compa, C¸c lo¹i m« h×nh h×nh häc, S¸ch gi¸o khoa, s¸ch gi¸o viªn, 
	+ ThiÕt bÞ hæ trî: M¸y tÝnh bá tói, ®Ìn chiÕu, giÊy trong...
 CHƯƠNGI: TỨ GIÁC
 Tiết 1: TỨ GIÁC
 Ngày soan:19/8/2012
 Ngày giảng:21/8/2012
I- Mục tiêu
+ Kiến thức: - HS nắm vững các định nghĩa về tứ giác, tứ giác lồi, các khái niệm : Hai đỉnh kề nhau, hai cạnh kề nhau, hai cạnh đối nhau, điểm trong, điểm ngoài của tứ giác & các tính chất của tứ giác. Tổng bốn góc của tứ giác là 3600.
+ Kỹ năng: HS tính được số đo của một góc khi biết ba góc còn lại, vẽ được tứ giác khi biết số đo 4 cạnh & 1 đường chéo.
+ Thái độ: Rèn tư duy suy luận ra được 4 góc ngoài của tứ giác là 3600
II. Chuẩn bị :
 - GV: com pa, thước, 2 tranh vẽ hình 1 ( sgk 2) Hình 5 (sgk) bảng phụ
 - HS: Thước, com pa, bảng nhóm
III- Tiến trình bài dạy
1/ Kiểm tra bài cũ:- GV: kiểm tra đồ dùng học tập của học sinh và nhắc nhở dụng cụ học tập cần thiết: thước kẻ, ê ke, com pa, thước đo góc.
2/. Bài mới :
Hoạt động của giáo viên
Hoạt động của học sinh
* Hoạt động 1: Hình thành định nghĩa
- GV: treo tranh (bảng phụ)
- HS: Quan sát hình & trả lời
- Các HS khác nhận xét
-GV: Trong các hình trên mỗi hình gồm 4 đoạn thẳng: AB, BC, CD & DA.
Hình nào có 2 đoạn thẳng cùng nằm trên một ĐT
- Ta có H1 là tứ giác, hình 2 không phải là tứ giác. Vậy tứ giác là gì ?
- GV: Chốt lại & ghi định nghĩa 
- GV: giải thích : 4 đoạn thẳng AB, BC, CD, DA trong đó đoạn đầu của đoạn thẳng thứ nhất trùng với điểm cuối của đoạn thẳng thứ 4.
+ 4 đoạn thẳng AB, BC, CD, DA trong đó không có bất cứ 2 đoạn thẳng nào cùng nằm trên 1 đường thẳng.
+ Cách đọc tên tứ giác phải đọc hoặc viết theo thứ tự các đoạn thẳng như: ABCD, BCDA, ADBC 
+Các điểm A, B, C, D gọi là các đỉnh của tứ giác.
+ Các đoạn thẳng AB, BC, CD, DA gọi là các cạnh của tứ giác.
* Hoạt động 2: Định nghĩa tứ giác lồi
-GV: Hãy lấy mép thước kẻ lần lượt đặt trùng lên mỗi cạch của tứ giác ở H1 rồi quan sát
- H1(a) luôn có hiện tượng gì xảy ra ?
- H1(b) (c) có hiện tượng gì xảy ra ?
- GV: Bất cứ đương thẳng nào chứa 1 cạnh của hình H1(a) cũng không phân chia tứ giác thành 2 phần nằm ở 2 nửa mặt phẳng có bờ là đường thẳng đó gọi là tứ giác lồi.
- Vậy tứ giác lồi là tứ giác như thế nào ?
+ Trường hợp H1(b) & H1 (c) không phải là tứ giác lồi
* Hoạt động 3:)Tổng các góc trong của tứ giá các khái niệm cạnh kề đối, gócdối góc ngoài đường chéo
GV: Vẽ H3 và giải thích khái niệm:
GV: Không cần tính số mỗi góc hãy tính tổng 4 góc
Â+ (độ)
- Gv: ( gợi ý hỏi)
+ Tổng 3 góc của 1 là bao nhiêu độ?
+ Muốn tính tổng Â+ (độ) ( mà không cần đo từng góc ) ta làm ntn?
+ Gv chốt lại cách làm:
- Chia tứ giác thành 2 có cạnh là đường chéo
- Tổng 4 góc tứ giác = tổng các góc của 2 ABC & ADC Tổng các góc của tứ giác bằng 3600
- GV: Vẽ hình & ghi bảng
1) Định nghĩa 
 H1(a) H2(b) 
 H1(c) H1(d)
* Định nghĩa:
 Tứ giác ABCD là hình gồm 4 đoạn thẳng AB, BC, CD, DA trong đó bất kỳ 2 đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.
* Tên tứ giác phải được đọc hoặc viết theo thứ tự của các đỉnh.
*Định nghĩa tứ giác lồi
* Định nghĩa: (sgk)
* Chú ý: Khi nói đến 1 tứ giác mà không giải thích gì thêm ta hiểu đó là tứ giác lồi
+ Hai đỉnh thuộc cùng một cạnh gọi là hai đỉnh kề nhau
+ hai đỉnh không kề nhau gọi là hai đỉnh đối nhau
+ Hai cạnh cùng xuất phát từ một đỉnh gọi là hai cạnh kề nhau
+ Hai cạnh không kề nhau gọi là hai cạnh đối nhau - Điểm nằm trong M, P điểm nằm ngoài N, Q
2/ Tổng các góc của một tứ giác ( HD4)
 Â1 + = 1800
= 1800
 (= 3600
 Hay = 3600
* Định lý: SGK
3/. Luyên tập - Củng cố: 
- GV: cho HS làm bài tập trang 66. Hãy tính các góc còn lại
4/.Dặn dò - Nêu sự khác nhau giữa tứ giác lồi & tứ giác không phải là tứ giác lồi ?
- Làm các bài tập : 2, 3, 4 (sgk)
* Chú ý : T/c các đường phân giác của tam giác cân
* HD bài 4: Dùng com pa & thước thẳng chia khoảng cách vẽ tam giác có 1 cạnh là đường chéo trước rồi vẽ 2 cạch còn lại
Rút kinh nghiệm :..
. 
 Tiết 2: HÌNH THANG 
 Ngày soan:26/8/2012
 Ngày giảng:28/8/2012
I- Mục tiêu 
+ Kiến thức: - HS nắm vững các định nghĩa về hình thang , hình thang vuông các khái niệm : cạnh bên, đáy , đường cao của hình thang
+ Kỹ năng: - Nhận biết hình thang hình thang vuông, tính được các góc còn lại của hình thang khi biết một số yếu tố về góc.
+ Thái độ: Rèn tư duy suy luận, sáng tạo 
II. Chuẩn bị :
- GV: com pa, thước, tranh vẽ bảng phụ, thước đo góc
- HS: Thước, com pa, bảng nhóm
III- Tiến trình bài dạy
1) Kiểm tra bài cũ: - GV: (dùng bảng phụ )
* HS1: Thế nào là tứ giác lồi ? Phát biểu ĐL về tổng 4 góc của 1 tứ giác ?
* HS 2: Góc ngoài của tứ giác là góc như thế nào ?Tính tổng các góc ngoài của tứ giác
 2 Bài mới:
Hoạt động của giáo viên
Hoạt động của học sinh
* Hoạt động 1: ( Giới thiệu hình thang)
* Hoạt động 2: Định nghĩa hình thang
- GV: Em hãy nêu định nghĩa thế nào là hình thang 
- GV: Tứ giác ở hình 13 có phải là hình thang không ? vì sao ?
 H(a)
* Hoạt động 4: ( Bài tập áp dụng)
 GV: đưa ra bài tập HS làm việc theo nhóm nhỏ
Cho hình thang ABCD có 2 đáy AB & CD biết:
 AD // BC. CMR: AD = BC; AB = CD 
GT
ABCD là hình thang đáyAB//CD 
KL
AB=CD: AD= BC
 A B
D C 
Bài toán 2:
GT
ABCD là hình thang đáyAB//CD;AB=CD 
KL
AD// BC; AD = BC
 A B 
D C 
 - GV: qua bài 1 & bài 2 em có nhận xét gì ?
* Hoạt động 5: Hình thang vuông
1) Định nghĩa
 Hình thang là tứ giác có hai cạnh đối song song 
* Hình thang ABCD :
+ Hai cạnh đối // là 2 đáy
+ AB đáy nhỏ; CD đáy lớn
+ Hai cạnh bên AD & BC
+ Đường cao AH
*(H.a) = 600 AD// BC Hình thang
*- (H.b)Tứ giác EFGH có: 
 = 750 =1050 (Kề bù)
 1050 GF// EH
 Hình thang
*- (H.c) Tứ giác IMKN có:
= 1200 = 1200 
IN không song song với MK
 đó không phải là hình thang
* Nhận xét:
+ Trong hình thang 2 góc kề một cạnh bù nhau (có tổng = 1800)
+ Trong tứ giác nếu 2 góc kề một cạnh nào đó bù nhau Hình thang.
* Bài toán 1
- Hình thang ABCD có 2 đáy AB &CD theo (gt)AB // CD (đn)(1) mà AD // BC (gt) (2)
Từ (1) & (2)AD = BC; AB = CD ( 2 cắp đoạn thẳng // chắn bởi đương thẳng //.)
* Bài toán 2: (cách 2)
ABC = ADC (g.c.g)
* Nhận xét 2: (sgk)/70.
2) Hình thang vuông
 Là hình thang có một góc vuông.
 A B
 D C
3.Luyện tập - Củng cố :- GV: đưa bài tập 7 ( Bằng bảng phụ) . Tìm x, y ở hình 21
4/.Dặn dò 
- Học bài. Làm các bài tập 6,8,9 
- Trả lời các câu hỏi sau:+ Khi nào một tứ giác được gọi là hình thang.
+ Khi nào một tứ giác được gọi là hình thang vuông. 
Rút kinh nghiệm :..
. 
Tiết 3: HÌNH THANG CÂN
 Ngày soan:30/8/2012
 Ngày giảng:1/9/2012
I- Mục tiêu 
+ Kiến thức: - HS nắm vững các đ/n, các t/c, các dấu hiệu nhận biết về hình thang cân 
+ Kỹ năng: - Nhận biết hình thang hình thang cân, biết vẽ hình thang cân, biết sử dụng định nghĩa, các tính chất vào chứng minh, biết chứng minh 1 tứ giác là hình thang cân 
+ Thái độ: Rèn tư duy suy luận, sáng tạo 
II. Chuẩn bị :
 - GV: com pa, thước, tranh vẽ bảng phụ, thước đo góc
- HS: Thước, com pa, bảng nhóm 
III- Tiến trình bài dạy 
1/ Kiểm tra bài cũ: 
 - HS1: Phát biểu định nghĩa hình thang & nêu rõ các khái 
 niệm cạnh đáy, cạnh bên, đường cao của hình thang 
- HS2: Muốn chứng minh một tứ giác là hình thang
 ta phải chứng minh như thế nào? 
 2- Bài mới: 
Hoạt động của giáo viên 
Hoạt động của học sinh
 Hoạt động 1:Định nghĩa
Yêu cầu HS làm 
? Nêu định nghĩa hình thang cân. 
 GV: dùng bảng phụ
 a) Tìm các hình thang cân ?
b) Tính các góc còn lại của mỗi HTC đó
c) Có NX gì về 2 góc đối của HTC?
A B E F 
 800 800
 1000 
 D C 800 800 
 (a) G (b) H
 ( Hình (b) không phải vì 1800
 * Nhận xét: Trong hình thang cân 2 góc đối bù nhau.
*Hoạt động 2:Hình thành T/c, Định lý 1
Trong hình thang cân 2 góc đối bù nhau.
Còn 2 cạnh bên liệu có bằng nhau không ?
- GV: cho các nhóm CM & gợi ý
AD không // BC ta kéo dài như thế nào ?
- Hãy giải thích vì sao AD = BC ?
 ABCD là hình thang cân
 GT ( AB // DC)
 KL AD = BC 
 O
*Các nhóm CM: 
 A 12 + 12 B
 D C
+ AD // BC ? khi đó hình thang ABCD có dạng như thế nào ?
* Hoạt động 3(7’) Giới thiệu địmh lí 2
- GV: Với hình vẽ sau 2 đoạn thẳng nào bằng nhau ? Vì sao ?
- GV: Em có dự đoán gì về 2 đường chéo AC và BD ? 
GT ABCD là hình thang cân
 ( AB // CD)
KL AC = BD
GV: Muốn chứng minh AC = BD ta phải chứng minh 2 tam giác nào bằng nhau ?
* Hoạt động 4: (6’) Giới thiệu các phương pháp nhận biết hình thang cân.
- GV: Muốn chứng minh 1 tứ giác là hình thang cân ta có mấy cách để chứng minh ? là những cách nào ? Đó chính là các dấu hiệu nhận biết hình thang cân .
+ Đường thẳng m // CD+ Vẽ điểm A; B m : ABCD là hình thang có AC = BD
 Giải+ Vẽ (D; Đủ lớn) cắt m tại A
+ Vẽ (C;Đủ lớn) cắt m tại B(cùng bán kính)
1) Định nghĩa
 Hình thang cân là hình thang có 2 góc kề một đáy bằng nhau
ABCA là hình Thang cân
 I 
 700 N
 P Q 
K 1100 
 700 T S 
 (c) M (d)
a) Hình a,c,d là hình thang cân
b) Hình (a): = 1000
 Hình (c) : = 1100
 Hình (d) : = 900
c)Tổng 2 góc đối của hình thang cân là 1800
2) Tính chất
* Định lí 1:
 Trong hình thang cân 2 cạnh bên bằng nhau.
Chứng minh: 
 AD cắt BC ở O ( Giả sử AB < DC)
ABCD là hình thang cân nên 
ta có= nên ODC cân (2 góc ở đáy bằng nhau) OD = OC (1)
 nên OAB cân
(2 góc ở đáy bằng nhau) OA = OB (2) ...  lăng trụ, khối chóp 
* HĐ2: Các ví dụ
* Ví dụ 1: sgk
* Ví dụ 2:
Tính thể tích của hình chóp tam giác đều chiều cao hình chóp bằng 6 cm, bán kính đường tròn ngoại tiếp là 6 cm
* HĐ3: Tổ chức luyện tập
* Vẽ hình chóp đều 
- Vẽ đáy, xác định tâm (0) ngoại tiếp đáy
- Vẽ đường cao của hình chóp đều
- Vẽ các cạnh bên ( Chú ý nét khuất)
*HĐ4: Củng cố
chữa bài 44/123
a) HS chữa 
b) Làm bài tập sau
+ Đường cao của hình chóp = 12 cm; AB = 10 cm
Tính thể tích của hình chóp đều?
S
B
D
H
+ Cho thể tích của hình chóp đều 18 cm3 Cạnh AB = 4 cm Tính chiều cao hình chóp?
 C
 A
*HĐ5: Hướng dẫn về nhà
- Làm các bài tập 45, 46/sgk
- Xem trước bài tập luyện tập
1) Thể tích của hình chóp đều
A'
S
D'
B'
A
B
C
D
C'
HS vẽ và làm thực nghiệm rút ra CT tính V hình chóp đều 
 Vchóp đều = S. h 
- HS làm ví dụ
+ Đường cao của tam giác đều: ( 6: 2). 3 = 9 cm
Cạnh của tam giác đều: a2 - = h
a = 2. h . = 10,38 cm
- HS làm việc theo nhóm
* Đường cao của tam giác
AB 
* Diện tích đáy:
* Thể tích của hình chóp đều 
V = 
*Ta có: 
Tiết 68 Ngàysoạn:1 /5/2012
LUYỆN TẬP
I- Mục tiêu :
- GV giúp HS nắm chắc kiến thức có liên quan đến hình chóp đều - công thức tính thể tích của hình chóp đều.
- Rèn luyện kỹ năng tính thể tích hình chóp . Kỹ năng quan sát nhận biết các yếu tố của hình chóp đều qua nhều góc nhìn khác nhau. Kỹ năng vẽ hình chóp.
- Giáo dục cho HS tính thực tế của các khái niệm toán học.
II- phương tiện thực hiện: 
- GV: Mô hình hình hình chóp đều, và hình lăng trụ đứng. Bài tập
- HS: công thức tính thể tích các hình đã học - Bài tập
III- tiến trình bài dạy:
A- Tổ chức:
B- Kiểm tra:15’
C- Bài mới
Hoạt động của GV&HS
Nội dung cần đạt
*HĐ1: GV chữa nhanh bài KT 15'
- Phát biểu công thức tính thể tích hình chóp đều?
- áp dụng tính diện tích đáy và thể tích của hình chóp đều có kích thước như hình vẽ:
0
M
N
R = 12
 Biết SO = 35 cm. 
 * Đáp án và thang điểm
+ Phát biểu đúng (2 đ)
+ Viết đúng công thức (2đ)
* V chóp = S . h
SMNO = (cm2)
S đáy = 6.36 = 374,12 (cm2)
V chóp = .374,12 . 35 = 4364,77 (cm2)
*HĐ2: Luyện tập 
1) Chữa bài 47
- Chỉ có hình 4 vì các đa giác của hình 4 đều là tam giác đều
2) Chữa bài 48
- GV: dùng bảng phụ và HS lên bảng tính
3) Chữa bài 49
4) Bài tập 65(1)SBT : 
Hình vẽ đưa lên bảng phụ 
*HĐ3: Củng cố
- GV: nhắc lại phương pháp tính Sxq ; Stp và V của hình chóp
*HĐ4: Hướng dẫn về nhà
- Làm bài 50,52,57 
- Ôn lại toàn bộ chương 
- Giờ sau ôn tập.
Bảng ôn tập cuối năm:
 HS cần ôn lại khái niệm các hình lăng trụ đứng, lăng trụ đều, hình hộp chữ nhật, hình lập phương, hình chóp đều và các công thức tính Sxq, Stp, V của các hình.
 S
- HS lên bảng trình bày
Số 48a) Sxq = p.d = 2.5.4,33 = 43,3
 Stp = Saq + S đáy = 43,3 + 25 = 68,3 cm2
Số 49 a) Nửa chu vi đáy: 6.4 : 2 = 12(cm)
Diện tích xung quanh là:12. 10 = 120 (cm2)
b) Nửa chu vi đáy:7,5 . 2 = 15
Diện tích xung quanh là:Sxq = 15. 9,5= 142,5 ( cm2)
B
H
 S
 D C 
 A
BT65: 
a)Từ tam giác vuông SHK tính SK
 SK = (m)
Tam giác SKB có: 
SB = (m)
b) Sxq= pd 87 235,5 (m2)
c) V = S.h2 651 112,8(m3 )
HS nhắc lại các công thức tính đã học.
Ghi BTVN.
Tiết69 Ngàysoạn:/5/2012
ÔN TẬP CHƯƠNG IV
I- Mục tiêu bài dạy:
- GV giúp h/s nắm chắc kiến thức của chương: hình chóp đều, Hình hộp chữ nhật, hình lăng trụ - công thức tính diện tích, thể tích của các hình 
- Rèn luyện kỹ năng tính diện tích xung quanh, thể tích các hình . Kỹ năng quan sát nhận biết các yếu tố của các hình qua nhiều góc nhìn khác nhau. Kỹ năng vẽ hình không gian.
- Giáo dục cho h/s tính thực tế của các khái niệm toán học.
II- phương tiện thực hiện: 
- GV: Mô hình hình các hình - Bài tập
- HS: công thức tính thể tích các hình đã học - Bài tập
III- tiến trình bài dạy:
A- Tổ chức:
B- Bài mới:
1) Hệ thống hóa kiến thức cơ bản
Hình
Sxung quanh
Stoàn phần
Thể tích
D1
C1
B1
C
 A1
 D 
 A	
 * Lăng trụ đứng
 - Các mặt bên là
 B hình chữ nhật
 - Đáy là đa giác
* Lăng trụ đều: Lăng trụ đứng đáy là đa giác đều
Sxq = 2 p .h
P: Nửa chu vi đáy
h: chiều cao
Stp= Sxq + 2 Sđáy 
V = S. h
S: diện tích đáy
h: chiều cao
 B C
 F G
A D
E H
* Hình hộp chữ nhật: Hình có 6 mặt là hình chữ nhật
Sxq= 2(a+b)c
a, b: 2 cạnh đáy
c: chiều cao
Stp=2(ab+ac+bc)
V = abc
A'
S
D'
B'
A
B
C
D
C'
* Hình lập phương: Hình hộp chữ nhật có 3 kích thước bằng nhau. Các mặt bên đều là hình vuông
Sxq= 4 a2
a: cạnh hình lập phương
Stp= 6 a2
V = a3
S
B
D
H
C
A
Chóp đều: Mặt đáy là đa giác đều
Sxq = p .d
P: Nửa chu vi đáy
d: chiều cao mặt bên
( trung đoạn)
Stp= Sxq + Sđáy
V = S. h
S: diện tích đáy
h: chiều cao
2) Luyện tập
- GV: Cho HS làm các bài sgk/127, 128
* Bài 51: HS đứng tại chỗ trả lời
a) Chu vi đáy: 4a. Diện tích xung quanh là: 4a.h
 Diện tích đáy: a2. Diện tích toàn phần: a2 + 4a.h
b) Chu vi đáy: 3a. Diện tích xung quanh là: 3a.h
 Diện tích đáy: . Diện tích toàn phần: + 3a.h
c) Chu vi đáy: 6a. Diện tích xung quanh là: 6a.h
 Diện tích đáy: .6. Diện tích toàn phần: .6 + 6a.h
C- Củng cố: Làm bài 52* Đường cao đáy: h = 
* Diện tích đáy: * Thể tích : V = . 11,5
D- Hướng dẫn về nhà
	Ôn lại toàn bộ chương trình hình đã học
	Giờ sau ôn tập cuối năm.
Tiết 70 Ngàysoạn:/5/2012
ÔN TẬP CHƯƠNG CUỐI NĂM
I- Mục tiêu bài dạy:
- GV giúp HS nắm chắc kiến thức của cả năm học
- Rèn luyện kỹ năng chứng minh hình và tính diện tích xung quanh, thể tích các hình . Kỹ năng quan sát nhận biết các yếu tố của các hình qua nhiều góc nhìn khác nhau. Kỹ năng vẽ hình không gian.
- Giáo dục cho HS tính thực tế của các khái niệm toán học.
II- phương tiện thực hiện: 
- GV: Hệ thống hóa kiến thức của cả năm học. Bài tập
- HS: Công thức tính diện tích, thể tích các hình đã học - Bài tập
III- tiến trình bài dạy:
A- Tổ chức:
B- Bài mới:
Hoạt động của GV&HS
Nội dung cần đạt
*HĐ1 : Kiến thức cơ bản của kỳ II
1. Đa giác - diện tích đa giác
- Định lý Talét : Thuận - đảo
- Tính chất tia phân giác của tam giác
- Các trường hợp đồng dạng của 2 tam giác 
- Các TH đồng dạng của 2 tam giác vuông
+ Cạnh huyền và cạnh góc vuông
+ = k ; = k2
2. Hình không gian
- Hình hộp chữ nhật
- Hình lăng trụ đứng
- Hình chóp đều và hình chóp cụt đều
- Thể tích của các hình
*HĐ2: Chữa bài tập
Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm của BC.Chứng minh: 
a) 
b) HE.HC = HD.HB 
c) H, M, K thẳng hàng.
d) Tam giác ABC phải có thêm điều kiện gì thì tứ giác BHCK là hình thoi? Là hình chữ nhật? 
Để CM ta phải CM gì ?
Để CM: HE. HC = HD. HB ta phải CM 
gì ?
Để CM: H, M, K thẳng hàng ta phải CM 
gì ?
 Tứ giác BHCK là hình bình hành
Hình bình hành BHCK là hình thoi khi nào ? 
Hình bình hành BHCK là hình chữ nhật khi nào ? 
*HĐ3: Củng cố
 Chữa bài 3/ 132
- GV: Cho HS đọc kỹ đề bài - Phân tích bài toán và thảo luận đến kết quả
Giải
Ta có: BHCK là hình bình hành. Gọi M là giao điểm của 2 đường chéo BC và HK
a) BHCK là hình thoi nên HM BC vì :
 AH BC nên HM BC vậy A, H, M thẳng hàng nên ABC cân tại A
b) BHCK là HCN BH HC CH BE
BH HC H, D, E trùng nhau tại A 
Vậy ABC vuông cân tại A
Chữa bài 6/133
Kẻ ME // AK ( E BC)
Ta có: 
 => KE = 2 BK
=> ME là đường trung bình của ACK nên: EC = EK = 2 BK
BC = BK + KE + EC = 5 BK => 
( Hai tam giác có chung đường cao hạ từ A)
-GV: Hướng dẫn bài tập về nhà
*HĐ4: Hướng dẫn về nhà
- Ôn lại cả năm
- Làm tiếp bài tập phần ôn tập cuối năm
- HS nêu cách tính diện tích đa giác
-Nêu Định lý Talét : Thuận - đảo
- HS nhắc lại 3 trường hợp đồng dạng của 2 tam giác ?
- Các trường hợp đồng dạng của 2 tam giác 
vuông?
+ Cạnh huyền và cạnh góc vuông
 A
 E D
 H
 B M C
 K
HS vẽ hình và chứng minh.
a)Xét và có: 
 chung => 
(g-g)
b) Xét và có : 
( đối đỉnh)
=>( g-g)=>
=> HE. HC = HD. HB
c) Tứ giác BHCK có : 
BH // KC ( cùng vuông góc với AC) 
CH // KB ( cùng vuông góc với AB)
Tứ giác BHCK là hình bình hành. 
HK và BC cắt nhau tại trung điểm của mỗi đường. 
H, M, K thẳng hàng. 
d) Hình bình hành BHCK là hình thoi 
óHM BC.
Vì AH BC ( t/c 3 đường cao) 
=>HM BC 
ó A, H, M thẳng hàng 
óTam giác ABC cân tại A. 
*Hình bình hành BHCK là hình chữ nhật 
óó
( Vì tứ giác ABKC đã có )
ó Tam giác ABC vuông tại A.
các nhóm trình bày lơì giải
A
H
E
D
M
 B C
	 K
A
B
C
M
K
E
D
Ngàysoạn:25/82010
Ngày giảng:
ÔN TẬP CHƯƠNG CUỐI NĂM (tiếp)
I- Mục tiêu bài dạy:
- GV giúp h/s nắm chắc kiến thức của cả năm học
- Rèn luyện kỹ năng chứng minh hình và tính diện tích xung quanh, thể tích các hình . Kỹ năng quan sát nhận biết các yếu tố của các hình qua nhiều góc nhìn khác nhau. Kỹ năng vẽ hình không gian.
- Giáo dục cho h/s tính thực tế của các khái niệm toán học.
II- phương tiện thực hiện: 
- GV: Hệ thống hóa kiến thức của cả năm học 
- Bài tập
- HS: công thức tính diện tích, thể tích các hình đã học - Bài tập
III- tiến trình bài dạy:
A- Tổ chức:
B- Bài mới:
Hoạt động của GV
Hoạt động của HS
*HĐ1:Luyện tập 
1) Chữa bài 3/ 132
- GV: Cho HS đọc kỹ đề bài - Phân tích bài toán và thảo luận đến kết quả
Giải
Ta có: BHCK là hình bình hành. Gọi M là giao điểm của 2 đường chéo BC và HK
a) BHCK là hình thoi nên HM BC vì :
 AH BC nên HM BC vậy A, H, M thẳng hàng nên ABC cân tại A
b) BHCK là HCN BH HC CH BE
BH HC H, D, E trùng nhau tại A 
Vậy ABC vuông cân tại A
2) Chữa bài 6/133
Kẻ ME // AK ( E BC)
Ta có: 
 => KE = 2 BK
=> ME là đường trung bình của ACK nên: EC = EK = 2 BK
BC = BK + KE + EC = 5 BK => 
( Hai tam giác có chung đường cao hạ từ A)
3) Bài tập 10/133 SGK
Để CM: tứ giác ACC’A’ là hình chữ nhật ta CM gì ? 
- Tứ giác BDD’B’ là hình chữ nhật ta CM gì ? 
Cho HS tính Sxq; Stp ; V hình đã cho ?
*HĐ2: Củng cố
- GV: nhắc lại 1 số pp chứng minh
- Ôn lại hình không gian cơ bản:
+ Hình hộp chữ nhật
+ Hình lăng trụ 
+ Chóp đều
+ Chóp cụt đều
*HĐ3: Hướng dẫn về nhà
- Ôn lại toàn bộ cả năm
-Làm các BT: 1,2,3,4,5,6,7,9/ SGK 
- Giờ sau chữa bài KT học kỳII
- HS đọc bài toán
- HS các nhóm thảo luận
- Nhóm trưởng các nhóm trình bày lơì giải
A
H
E
D
M
 B C
	 K
A
B
C
M
K
E
D
 B C
` A D
 C’
 A’ D’
a)Xét tứ giác ACC’A’ có: 
AA’ // CC’ ( cùng // DD’ ) 
AA’ = CC’ ( cùng = DD’ ) 
Tứ giác ACC’A’ là hình bình hành. 
Có AA’ (A’B’C’D’)=> AA’ A’C” 
=>góc . Vậy tứ giác ACC’A’ là hình chữ nhật. 
CM tương tự => BDD’B’ là hình chữ nhật. 
b) áp dụng ĐL Pytago vào tam giác vuông ACC’ ta có: AC’2 = AC2 +CC’2 = AC2 +AA’2 
Trong tam giác ABC ta có: 
AC2 = AB2 +BC2 = AB2 + AD2 
Vậy AC’2 = AB2 + AD2+ AA’2 
c) Sxq= 2. ( 12 + 16 ). 25 = 1400 ( cm2 ) 
Sđ= 12 . 16 = 192 ( cm2 ) 
Stp= Sxq + 2Sđ = 1400 + 2. 192 = 1784 ( cm2)
V = 12 . 16 . 25 = 4800 ( cm3 ) 

Tài liệu đính kèm:

  • docHinh 8 CNsotdoc.doc