I) Mục tiêu :
– HS nắm vững công thức tímh diện tích hình chữ nhật, hìng vuông, tan giác vuông
– HS hiểu rằng để chứng minh các công thức đó cần vận dụng các tính chất của diện tích tam giác
– HS vận dụng được các công thức đã học và các tính chất của diện tích trong giải toán
II) Chuẩn bị của giáo viên và học sinh :
GV : Giáo án , thước thẳng, bảng phụ vẽ hình 121 trang 116
HS : Ôn tập công thức tính diện tích hình chữ nhật, hình vuông , hình tam giác
III) Tiến trình dạy học:
Tiết 27 Ngày dạy: $2. Diện tích hình chữ nhật I) Mục tiêu : HS nắm vững công thức tímh diện tích hình chữ nhật, hìng vuông, tan giác vuông HS hiểu rằng để chứng minh các công thức đó cần vận dụng các tính chất của diện tích tam giác HS vận dụng được các công thức đã học và các tính chất của diện tích trong giải toán II) Chuẩn bị của giáo viên và học sinh : GV : Giáo án , thước thẳng, bảng phụ vẽ hình 121 trang 116 HS : Ôn tập công thức tính diện tích hình chữ nhật, hình vuông , hình tam giác III) Tiến trình dạy học: Hoạt động của giáo viên Hoạt động của học sinh Phần ghi bảng a b a a ?1 ?1 ?2 ?2 a b Hoạt động 1 : Kiểm tra bài cũ Định nghĩa đa giác lồi ? Định nghĩa đa giác đều ? Tính số đo một góc của bát giác đều ? Hoạt động 2 : Các em thực hiện Các em thực hiện Từ công thức tính diện tích hình chữ nhật hãy suy ra công thức tính diện tích hình vuông , tam giác vuông ? C B A ?3 ?3 Các em thực hiện Ba tính chất của diện tích đa giác đã được vận dụng như thế nào khi chứng minh công thức tính diện tích tam giác vuông Hoạt động 3 : Củng cố : Các em làm bài tập 6 tr 118 SGK Diện tích hình chữ nhật được tính bởi công thức nào ? Vậy diện tích hình chữ nhật tỉ lệ như thế nào với cá cạnh ? Các em làm bài tập 8 tr 118 SGK Đo cạnh ( đơn vị mm ) rồi tính diện tích tam giác vuông dưới đây : Hướng dẫn về nhà : Học thuộc tính chất diện tích đa giác, công thức tính diện tích hình chữ nhật, hình vuông, tam giác vuông Bài tập về nhà : 7, 9, 10 , 14 Trang 118, 119 Cônh thức tính số đo một góc của đa giác đều n cạnh là Bát giác đều có n = 8 nên số đo một góc của bát giác đều là a) Diện tích hình A là diện tích 9 ô vuông, diện tích hình B cũng là diện tích 9 ô vuông b) Diện tích hình D là 8 ô vuông, diện tích hình C là hai ô vuông nên diện tích hình D gấp 4 lần diện tích hình C c) Diện tích hình E có 8 ô vuông nên diện tích hình E cũng gấp 4 lần diện tích hình C Hình vuông là hình chữ nhật có hai cạnh liên tiếp bằng nhau nên muốn tìm diện tích hình vuông ta lấy cạnh nhân cạnh Chẳng hạn , hình vuông có cạnh bằng a thì S = a.a = a2 * Một đường chéo của hình chữ nhật chia hình chữ nhật đó thành hai tam giác vuông bằng nhau Vậy muốn tìm diện tích tam giác vuông ta lấy tích độ dài hai cạnh góc vuông chia 2 Khi chứng minh công thức tính diện tích tam giác vuông ta vận dụng tính chất : – Hai tam giác bằng nhau thì có diện tích bằng nhau – Nếu một đa giác được chia thành những đa giác không có điểm trong chung thì diện tích của nó bằng tổ diện tích của những đa giác đó 6 / 118 Giải a) Khi chiều dài tăng 2 lần, chiều rộng không đổi thì diện tích hình chữ nhật tăng lên 2 lần b) Khi chiếu dài và chiều rộng tăng 3 lần thì diện tích hình chữ nhật tăng lên 9 lần c) Khi chiều dài tăng 4 lần, chiều rộng giảm 4 lần thì diện tích hình chữ nhật không đổi Chẳng hạn : Hình chữ nhật có chiều dài là a chiều rộng là b thì S = a.b và : a) Nếu a’=2a, b’ = b thì S’ = 2ab = 2S b) Nếu a’ = 3a, b’ = 3b thì S’ = 3a.3b = 9ab = 9S c) Nếu a’ = 4a, b’ = thì S’ = 4a. = a.b = S 8 / 118 Giải Ta đo được AB = 30 mm và AC = 25 mm Vậy diện tích tam giác vuông ABC là S = 1) Khái niệm diện tích đa giác a) Khái niệm: ( SGK tr 117 ) b) Tính chất : ( SGK tr 117 ) 2) Công thức tính diện tích hình chữ nhật Định lí : Diện tích hình chữ nhật bằng tích hai kích thước của nó S = a.b Ví dụ : Nếu a = 3,2 cm , b = 1,7 cm thì S = a.b = 3,2.1,7 = 5,44 (cm2) 3) Công thước tính diện tích hình vuông , tam giác vuông ( SGK Tr 118 ) S = a2 S = ab
Tài liệu đính kèm: