I.MỤC TIÊU:
- Kiến thức: Tiếp tục rèn luyện kĩ năng giải toán bằng cách lập phương trình, bài tập tổng hợp về rút gọn biểu thức.
- Kỹ năng: Hướng dẫn HS bài tập phát triển tư duy.
- Thái độ: Cẩn thận trong tính toán.
II.CHUẨN BỊ:
- Giáo viên: Bảng phụ ghi đề bài, một số bài giải mẫu.
- Học sinh: Ôn tập các kiến thức và làm bài theo yêu cầu của GV. Bảng con.
*ÔN TẬP LÝ THUYẾT (15)
ÔN TẬP Tuần : 35 - Tiết : 69 Soạn ngày: 19.04.11 Dạy ngày: 26à 29.04.11 I.MỤC TIÊU: - Kiến thức: Tiếp tục rèn luyện kĩ năng giải toán bằng cách lập phương trình, bài tập tổng hợp về rút gọn biểu thức. - Kỹ năng: Hướng dẫn HS bài tập phát triển tư duy. - Thái độ: Cẩn thận trong tính toán. II.CHUẨN BỊ: - Giáo viên: Bảng phụ ghi đề bài, một số bài giải mẫu. - Học sinh: Ôn tập các kiến thức và làm bài theo yêu cầu của GV. Bảng con. *ÔN TẬP LÝ THUYẾT (15’) CHƯƠNG IV – PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN MỐI LIÊN HỆ GIỮA THỨ TỰ VỚI PHÉP CỘNG VÀ PHÉP NHÂN 1. Nhắc lại về thứ tự trên tập số: Trên tập hợp số thực, với hai số a và b sẽ xãy ra một trong các trường hợp sau: Số a bằng số b, kí hiệu là: a = b. Số a nhỏ hơn số b, kí hiệu là: a < b. Số a lớn hơn số b, kí hiệu là: a > b. Từ đó ta có nhận xét: Nếu a không nhỏ hơn b thì a = b hoặc a > b, khi đó ta nói a lớn hơn hoặc bằng b, kí hiệu là: Nếu a không lớn hơn b thì a = b hoặc a < b, khi đó ta nói a nhỏ hơn hoặc bằng b, kí hiệu là: 2. Bất đẳng thức: Bất đẳng thức là hệ thức có một trong các dạng: A > B, A B, A < B, A B 3. Liên hệ giữa thứ tự và phép cộng: Tính chất: Với ba số a, b và c, ta có: Nếu a > b thì a + C > b + C Nếu a b thì a + C b + C Nếu a < b thì a + C < b + C Nếu a b thì a + C b + C Khi cộng cùng một số vào cả hai vế của một bất đẳng thức ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho. 4. Liên hệ giữa thứ tự và phép nhân: Tính chất 1: Với ba số a, b và c > 0, ta có: Nếu a > b thì a . C > b . C và > Nếu a b thì a . C b . C và Nếu a < b thì a . C < b . C và < Nếu a b thì a . C b . C và Khi nhân hay chia cả hai vế của một bất đẳng thức với cùng một số dương ta được bất đẳng thức cùng chiều với bất đẳng thức đã cho. Tính chất 2: Với ba số a, b và c < 0, ta có: Nếu a > b thì a . C Nếu a b thì a . C b . C và Nếu a b . C và < Nếu a b thì a . C b . C và Khi nhân hay chia cả hai vế của một bất đẳng thức với cùng một số âm ta được một bất đẳng thức mới ngược chiều với bất đẳng thức đã cho. 5. Tính chất bắc cầu của thứ tự: Tính chất: Với ba số a, b và c, nếu b và b > c thì a > c BẤT PHƯƠNG TRÌNH MỘT ẨN 1. Bất phương trình một ẩn Một bất phương trình với ẩn x có dạng: A(x) > B(x) hoặc A(x) < B(x); A(x) B(x); A(x) B(x)}, trong đó vế trái A(x) và vế phải B(x) là hai biểu thức của cùng một biến x. 2. Tập nghiệm của bất phương trình: Tập hợp tất cả các nghiệm của một bất phương trình được gọi là tập nghiệm của bất phương trình đó. Khi bài toán có yêu cầu giải một bất phương trình, ta phải tìm tập nghiệm của bất phương trình đó. 3. Bất phương trình tương đương: Hai bất phương trình có cùng một tập nghiệm là hai phương trình tương đương. BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN 1. Hai quy tắc biến đổi bất phương trình Quy tắc chuyển vế: Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta phải đổi dấu hạng tử đó. Quy tắc nhân với một số: Khi nhân ( hoặc chia) cả hai vế của một bất phương trình với cùng một số khác 0, ta phải: a) Giữ nguyên chiều của bất phương trình nếu số đó dương. b) Đổi chiều của bất phương trình nếu số đó âm. 2. Định nghĩa bất phương trình bậc nhất một ẩn Định nghĩa: Bất phương trình dạng: ax + b > 0, ax + b < 0, ax + b 0, ax + b 0 với a và b là hai số đã cho và a 0, được gọi là bất phương trình bậc nhất một ẩn. Bất phương trình bậc nhất một ẩn có dạng: ax + b > 0, a 0 dđược giải như sau: ax + b > 0 ax > - b *Với a > 0, ta được: x > *Với a < 0, ta được: x < BẤT PHƯƠNG TRÌNH ĐƯA ĐƯỢC VỀ DẠNG BẬC NHẤT Ta thực hiện theo các bước: Bước 1: Bằng việc sử dụng các phép toán bỏ dấu ngoặc hay quy đồng mẫu...để biến đổi bất phương trình ban đầu về dạng: ax + b 0; ax + b > 0; hoặc ax + b < 0; ax + b 0 Bước 2: Giải bất phương trình nhận được, từ đó kết luận. PHƯƠNG TRÌNH CHỨA DẤU GIÁ TRỊ TUYỆT ĐỐI 1. Nhắc lại về giá trị tuyệt đối Với a, ta có: Tương tự như vậy, với đa thức ta cũng có: 2. Phương trình chứa dấu giá trị tuyệt đối Trong phạm vi kiến thức lớp 8 chúng ta chỉ quan tâm tới ba dạng phương trình chứa dấu giá trị tuyệt đối, bao gồm: Dạng 1: Phương trình: với k là hằng số không âm Dạng 2: Phương trình: Dạng 3: Phương trình: III.HOẠT ĐỘNG DẠY HỌC: NỘI DUNG HOẠT ĐỘNG CỦA GV HOẠT ĐỘNG CỦA HS Hoạt động 1: Ôn tập về giải bài toán bằng cách lập phương trình (8 phút) v(km/h) t(h) s(km) Lúc đi 25 x(x>0) Lúc về 30 x Phương trình: Giải phương trình được x = 50 (TMĐK) Quãng đường AB dài 50 km NS1 ngày (SP/ngày) Số ngày (ngày) Số SP(SP) Dự định 50 x Thựchiện 65 x + 255 ĐK: x nguyên dương. Phương trình: Giải phương trình được: x = 1500 (TMĐK). Trả lời: Số SP xí nghiệp phải sản xuất theo kế hoạch là 1500 sản phẩm. -GV nêu yêu cầu kiểm tra. HS1: Chữa bài tập 12 tr 131 SGK. HS2: Chữa bài tập 13 tr 131 (theo đề đã sửa) SGk. -GV yêu cầu hai HS lên bảng phân tích bài tập, lập phương trình, giải phương trình, trả lời bài toán. -Sau khi hai HS kiểm tra bài xong, GV yêu cầu hai HS khác đọc lời giải bài toán. GV nhắc nhở HS những điều cần chú ý khi giải toán bằng cách lập phương trình. -Hai HS lên bảng kiểm tra. HS1: Chữa bài 12 tr 131 SGK. HS2: Chữa bài 13 tr 131, 132 SGK. HS lớp nhận xét bài làm của bạn. Hoạt động 2: Ôn tập dạng bài tập rút gọn biểu thức tổng hợp (20 phút) Bài 14 tr 132 SGK Cho biểu thức a) Rút gọn biểu thức b) Tính gía trị của A tại x biết |x| = c) Tìm giá trị của x để A < 0 Bài giải a) A = A= A= A= A= ĐK: x ¹ ± 2 b) |x| = Þ x = ± (TMĐK) + Nếu x = + Nếu x = A= c) A < 0 Û Û 2 – x < 0 Û x > 2 (TMĐK) Tìm giá trị của x để A > 0 d) A > 0 Û Û 2 – x > 0 Û x < 2. Kết hợp đk của x: A > 0 khi x < 2 và x ¹ - 2 c) A có giá trị nguyên khi 1 chia hếtcho2– x Þ 2 – x Ỵ Ư(1) Þ 2 – x Ỵ {±1} * 2 – x = 1 Þ x = 1 (TMĐK) * 2 – x = -1 Þ x = 3 (TMĐK) Vậy khi x = 1 hoặc x = 3 thì A có giá trị nguyên. -Giới thiệu Bài 14 tr 132 SGK. (đề bài đưa lên bảng phụ) -GV yêu cầu một HS lên bảng rút gọn biểu thức -GV yêu cầu HS lớp nhận xét bài rút gọn của bạn. -Sau đó yêu cầu hai HS lên làm tiếp câu b và c, mỗi HS làm một câu. -GV nhận xét, chữa bài Sau đó GV bổ sung thêm câu hỏi: d) Tìm giá trị của x để A>0 c) Tìm giá trị nguyên của x để A có giá trị nguyên -Một HS lên bảng làm. a) A = A= A= A= A= ĐK: x ¹ ± 2 b) |x| = Þ x = ± (TMĐK) + Nếu x = + Nếu x = A= c) A < 0 Û Û 2 – x < 0 Û x > 2 (TMĐK) Tìm giá trị của x để A > 0 d) A > 0 Û Û 2 – x > 0 Û x < 2. Kết hợp đk của x: A > 0 khi x < 2 và x ¹ - 2 c) A có giá trị nguyên khi 1 chia hếtcho2– x Þ 2 – x Ỵ Ư(1) Þ 2 – x Ỵ {±1} * 2 – x = 1 Þ x = 1 (TMĐK) * 2 – x = -1 Þ x = 3 (TMĐK) Vậy khi x = 1 hoặc x = 3 thì A có giá trị nguyên. -HS lớp nhận xét bài làm của hai bạn. HƯỚNG DẪN VỀ NHÀ (2 phút) Để chuẩn bị tốt cho kiểm tra toán học kì II, HS cần ôn lại về Đại số: - Lí thuyết: các kiến thức cơ bản của hai chương III và IV qua các câu hỏi ôn tập chương, các bảng tổng kết. - Bài tập: Ôn lại các dạng bài tập giải phương trình đưa được về dạng ax + b = 0, phương trình tích, phương trình chứa ẩn ở mẫu, phương trình chứa giá trị tuyệt đối, giải bất phương trình, giải toán bằng cách lập phương trình, rút gọn biểu thức.
Tài liệu đính kèm: