Giáo án Đại số Lớp 8 - Tiết 56 đến 65

Giáo án Đại số Lớp 8 - Tiết 56 đến 65

hợp số

 Trên tập hợp số thực, khi so sánh hai số a và b, xảy ra một trong ba trường hợp sau :

Số a bằng số b, kí hiệu a = b

Số a nhỏ hơn số b, kí hiệu a <>

Số a lớn hơn số b, kí hiệu a > b

Nếu số a không nhỏ hơn số b, thì phải có hoặc a > b hoặc a = b khi đó ta nói gọn là a lớn hơn hoặc bằng b, kí hiệu a b

Ví dụ : x2 0 với mọi x

Nếu c là số không âm thì ta viết

c 0

Nếu số a không lớn hơn số b, thì phải có hoặc a < b="" hoặc="" a="b" khi="" đó="" ta="" nói="" gọn="" là="" a="" nhỏ="" hơn="" hoặc="" bằng="" b,="" kí="" hiệu="" a="" b="">

Ví dụ : -x2 0 Với mị x

Nếu số y không lớn hơn 3 thì ta viết y 3

2) Bất đẳng thức

Ta gọi hệ thức dạng a <>

 (hoặc a > b, a b, a b) là bất đẳng thức và gọi a là vế trái, b là vế phải của bất đẳng thức

Ví dụ1:Bất đẳng thức7 + (-3) > -5

Có vế trái là 7 + (-3) còn vế phải là -5

 

doc 19 trang Người đăng tuvy2007 Lượt xem 554Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Đại số Lớp 8 - Tiết 56 đến 65", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tuần : 27	 liên hệ giữa thứ tự và phép cộng	Ngày soạn . . . . . . . . 
Tiết : 56	Ngày giảng . . . . . . . 
I) Mục tiêu : 
Nhận biết vế trái, vế phải và biết dùng dấu của BĐT
Biết tính chất liên hệ giữa thứ tự với phép cộng ở dạng BĐT
Biết chứng minh BĐT nhờ so sánh giá trị các vế ở BĐT hoặc vận dụng tính chất liên hệ giữa thứ tự và phép cộng (mức đơn giản)
II) Chuẩn bị của giáo viên và học sinh : 
 GV : Giáo án, bảng phụ vẽ hình trục số , đề ?1
 HS : Ôn lại thứ tự trên tập hợp số 
III) Tiến trình dạy học : 
Hoạt động của giáo viên
Hoạt động của học sinh
Phần ghi bảng
<
>
<
?1
?1
Hoạt động 1 : 
1) Nhắc lại về thứ tự trên tập hợp số 
 Trên tập hợp số thực, khi so sánh hai số a và b, thì xảy ra bao nhiêu trường hợp ? 
Và được kí hiệu như thế nào ?
Các em thực hiện 
Nếu số a không nhỏ hơn số b, thì ta phải hiểu như thế nào ?
Khi đó ta nói gọn là a lớn hơn hoặc bằng b, kí hiệu a b
Ví dụ : x2 0 với mọi x
Nếu c là số không âm thì c là số như thế nào ? 
Ta viết như thế nào ?
Nếu số a không lớn hơn số b, thì ta phải hiểu như thế nào ?
Khi đó ta nói gọn là a nhỏ hơn hoặc bằng b, kí hiệu a b 
Ví dụ : -x2 0 Với mị x
Nếu số y không lớn hơn 3 thì y là những số nào ?
Ta viết y 3
Hoạt động 2 : 
Bất đẳng thức 
Ta gọi hệ thức dạng a < b
 (hoặc a > b, a b, a b) là bất đẳng thức và gọi a là vế trái, b là vế phải của bất đẳng thức 
Ví dụ1:Bất đẳng thức7 + (-3) > -5
Có vế trái là ? còn vế phải là ?
?3
?4
?3
?4
?2
?2
Hoạt động 3 : Tính chất 
 Khi cộng 3 vào cả hai vế của bất đẳng thức -4 < 2 thì được bất đẳng thức -4 + 3 < 2 + 3
Các em thực hiện 
Với ba số a, b và c ta có :
Nếu a < b
 thì a + c thế nào với b + c ?
Nếu a b 
thì a + c thế nào với b + c ?
Nếu a > b 
thì a + c thế nào với b + c ?
Nếu a b 
thì a + c thế nào với b + c ?
Hai bất đẳng thức -2 < 3 và -4 < 2
(hay 5 >1 và -3 > -7) được gọi là hai bất đẳng thức cùng chiều
 Từ đó các em hãy rút ra được tính chất liên hệ giữa thứ tự và phép cộng đối với bất đẳng thức?
Một em nhắc lại tính chất trong khung ?
Các em thực hiện 
Các em thực hiện 
Hướng dẫn về nhà :
Học thuộc khái niệm bất đẳng thức và tính chất
Bài tập về nhà : 1, 2, 3, 4 / 37
 Trên tập hợp số thực, khi so sánh hai số a và b, thì xảy ra một trong ba trường hợp sau :
Số a bằng số b, kí hiệu a = b
Số a nhỏ hơn số b, kí hiệu a < b
Số a lớn hơn số b, kí hiệu a > b
 Giải 
a) 1,53 1,8 b) -2,37 -2,41
c) = d) 
Nếu số a không nhỏ hơn số b, thì ta phải hiểu là a > b hoặc a = b
Nếu c là số không âm thì c là số dương hoặc bằng 0
Ta viết c 0
Nếu số a không lớn hơn số b, thì ta phải hiểu là a nhỏ hơn b hoặc a bằng b 
Nếu số y không lớn hơn 3 thì y là những số nhỏ hơn 3 hoặc bằng 3
Ví dụ1:Bất đẳng thức7 + (-3) > -5
Có vế trái là7 + (-3) còn vế phải là-5
a) Khi cộng -3 vào cả hai vế của bất đẳng thức -4 < 2 thì được bất đẳng thức -4 + (-3) < 2 + (-3)
b) Khi cộng c vào cả hai vế của bất đẳng thức -4 < 2 thì được bất đẳng thức -4 + c < 2 + c
Với ba số a, b và c ta có :
Nếu a < b thì a + c < b + c
Nếu a b thì a + c b + c
Nếu a > b thì a + c > b + c
Nếu a b thì a + c b + c
Khi cộng cùng một số vào cả hai vế của một bất đẳng thức ta được bất đẳng thức mới cùng chiều với bất đằng thức đã choGiải
Ta có -2004 > -2005
theo tính chất liên hệ giữa thứ tự và phép cộng ta cộng (-777) vào cả hai vế của bất đẳng thức trên ta được :
 -2004 + (-777) > -2005 + (-777)
Ta có < 3; theo tính chất 
liên hệ giữa thứ tự và phép cộng ta cộng 2 vào cả hai vế của bất đẳng thức trên ta được :
 + 2 < 3 + 2 hay + 2 < 5
1) Nhắc lại về thứ tự trên tập hợp số 
 Trên tập hợp số thực, khi so sánh hai số a và b, xảy ra một trong ba trường hợp sau :
Số a bằng số b, kí hiệu a = b
Số a nhỏ hơn số b, kí hiệu a < b
Số a lớn hơn số b, kí hiệu a > b
Nếu số a không nhỏ hơn số b, thì phải có hoặc a > b hoặc a = b khi đó ta nói gọn là a lớn hơn hoặc bằng b, kí hiệu a b
Ví dụ : x2 0 với mọi x
Nếu c là số không âm thì ta viết 
c 0
Nếu số a không lớn hơn số b, thì phải có hoặc a < b hoặc a = b khi đó ta nói gọn là a nhỏ hơn hoặc bằng b, kí hiệu a b 
Ví dụ : -x2 0 Với mị x
Nếu số y không lớn hơn 3 thì ta viết y 3
2) Bất đẳng thức 
Ta gọi hệ thức dạng a < b
 (hoặc a > b, a b, a b) là bất đẳng thức và gọi a là vế trái, b là vế phải của bất đẳng thức 
Ví dụ1:Bất đẳng thức7 + (-3) > -5
Có vế trái là 7 + (-3) còn vế phải là -5
3) Liên hệ giữa thứ tự và phép cộng 
Tính chất :
 Với ba số a, b và c ta có :
Nếu a < b thì a + c < b + c
Nếu a b thì a + c b + c
Nếu a > b thì a + c > b + c
Nếu a b thì a + c b + c
Khi cộng cùng một số vào cả hai vế của một bất đẳng thức ta được bất đẳng thức mới cùng chiều với bất đằng thức đã choGiải
Ví dụ 2:
Chứng tỏ 2003+(-35) <2004+(-35)
 Giải 
Ta có 2003 < 2004 theo tính chất 
liên hệ giữa thứ tự và phép cộng ta cộng (-35) vào cả hai vế của bất đẳng thức trên ta được :
2003 + (-35) < 2004 + (-35)
Tuần : 27 Liên hệ giữAthứ tự và phép nhân Ngày soạn . . . . . . . . 
Tiết : 57	 Ngày giảng . . . . . . . 
I) Mục tiêu : 
Nắm được tính chất liên hệ giữa thứ tự và phép nhân (với số dương và với số âm) ở dạng BĐT
Biết cách sử dụng tính chất đó để chứng minh BĐT (qua một số kĩ thựât suy luận)
Biết phối hợp vận dụng các tính chất thứ tự (đặc biệt ở tiết luyện tập )
II) Chuẩn bị của giáo viên và học sinh : 
 GV: Giáo án, bảng phụ ghi đề ?2, hình trục số 
 HS : Ôn tập quy tắc nhân các số hữu tĩ (số thực)
III) Tiến trình dạy học : 
Hoạt động của giáo viên
Hoạt động của học sinh
Phần ghi bảng
?3
?3
?2
?2
?1
?1
Hoạt động 1 : Kiểm tra bài cũ 
Phát biểu tính chất liên hệ giữa thứ tự và phép cộng ?
Hoạt động 2 : 
Liên hệ giữa thứ tự và phép nhân với số dương 
Khi nhân cả hai vế của bất đẳng thức -2 < 3 với 2 thì ta được bất đẳng thức nào ?
Các em thực hiện 
Vậy em nào có thể phát biểu tính chất khi nhân cả hai vế của bất đẳng thức với cùng một số dương?
Các em thực hiện 
Hoạt động 3 : 
Liên hệ giữa thứ tự và phép nhân với số âm 
Khi nhân cả hai vế của bất đẳng thức -2 < 3 với (-2) thì ta được bất đẳng thức nào ?
Em có nhận xét gì về chiều của bất đẳng thức vừa tìm được với chiều của bất đẳng thức đã cho ?
Các em thực hiện
Hai bất đẳng thức -2 3,5
được gọi là hai bất đẳng thức ngược chiều
?5
?4
?5
?4
Các em thực hiện
Ta có thể suy ra ngay được a < b
Vì khi ta nhân hai vế của bất đẳng thức a < b với (-4) ta được :
 - 4a > - 4b
Các em thực hiện
Quy tắc về dấu của phép chia cũng tương tự như quy tắc về dấu ở phép nhân do đó tính chất liên hệ giữa thứ tự và phép chia cũng tương tự như phép nhân
Hoạt động 4 : Củng cố 
Các em làm bài tập 5 trang 39
Câu c ta có thể giải thích :
Vế trí có giá trị dương
Còn vế phải có giá trị âm mà số dương thì không thể nhỏ hơn số âm 
Hướng dẫn về nhà :
Học thuộc các tính chất 
Bài tập về nhà : 
6, 7, 8, 9 trang 39, 40 SGK
HS Phát biểu tính chất như SGK
Khi nhân cả hai vế của bất đẳng thức -2 < 3 với 2 thì ta được :
(- 2).2 = -4 còn 3.2 = 6
Ta thấy -4 < 6
Vậy (- 2).2 < 3.2
a) Nhân cả hai vế của bất đẳng thức -2 < 3 với 5091 thì được bất đẳng thức : (-2).5091 < 3.5091
b) Dự đoán kết quả :
Nhân cả hai vế của bất đẳng thức -2 < 3 với số c dương thì được bất đẳng thức (-2).c < 3.c
Đặt dấu thích hợp vào ô vuông
a) (-15,2). 3,5 < (-15,08). 3,5
b) 4,15 . 2,2 > -5,3 . 2,2
Khi nhân cả hai vế của bất đẳng thức -2 < 3 với (-2) thì ta được :
(-2).(-2) = 4 còn 3. (-2) = -6
Ta thấy 4 > -6
Nên (-2).(-2) > 3. (-2)
Bất đẳng thức mới có chiều ngược với chiều của bất đẳng thức đã cho
a) Nhân cả hai vế của bất đẳng thức -2 3. (-345)
b) Dự đoán kết quả :
Nhân cả hai vế của bất đẳng thức -2 3.c
Cho - 4a > - 4b hãy so sánh a và b
 Giải 
Ta nhân hai vế của bất đẳng thức - 4a > - 4b với () ta được
- 4a () < - 4b.()
a < b
a) Khi chia cả hai vế của bất đẳng thức với cùng một số dương ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho
b) Khi chia cả hai vế của một bất đẳng thức với cùng một số âm ta được bất đẳng thức mới ngược chiều với bất đẳng thức đã cho
5 / 39 Giải
a) (-6). 5 < (-5).5 Đúng 
vì (-6) < (-5) (-6). 5 < (-5).5 
b) (-6).(-3) < (-5).(-3) Sai 
vì (-6) (-5).(-3) 
c) (-2003).(-2005) (-2005).2004
Sai vì (-2003) 2004
(-2003).(-2005)(-2005).2004
d) -3x2 0 Đúng
Vì ta có x2 0 với mọi x
Nhân hai vế x2 0 với (-3)
-3x2 0 
1) Liên hệ giữa thứ tự và phép nhân với số dương 
Tính chất :
Với ba số a, b và c mà c > 0 ta có:
Nếu a < b thì ac < bc 
Nếu a b thì ac bc
Nếu a > b thì ac > bc 
Nếu a b thì ac bc
Khi nhân cả hai vế của bất đẳng thức với cùng một số dương ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho
2) Liên hệ giữa thứ tự và phép nhân với số âm 
Tính chất:
Với ba số a, b và c mà c < 0 ta có:
Nếu a bc 
Nếu a b thì ac bc
Nếu a > b thì ac < bc 
Nếu a b thì ac bc
Khi nhân cả hai vế của một bất đẳng thức với cùng một số âm ta được bất đẳng thức mới ngược chiều với bất đẳng thức đã cho
3) Tính chất bắc cầu của thứ tự 
Với ba số a, b và c ta thấy rằng : Nếu a < b và b < c thì a < c. 
Tính chất này gọi là tính chất bắc cầu
Ví dụ : 
Cho a > b chứng minh a + 2 > b -1
 Giải 
Cộng 2 vào hai vế của bất đẳng thức a > b , ta được :
 a + 2 > b + 2 ( 1 )
Cộng b vào hai vế của bất đẳng thức 2 > -1 , ta được :
b + 2 > b - 1 ( 2 )
Từ (1) và (2) theo tính chất bắc cầu suy ra :
 a + 2 > b -1
Tuần : 28	Luyện tập 	Ngày soạn . . . . . . . . 
Tiết : 58	Ngày giảng . . . . . . . 
I) Mục tiêu : 
Củng cố kiến thức lí thuyết về tính chất liên hệ giữa thứ tự và phép cộng đối với bất đẳng thức
Rèn luyện kĩ năng ứng dụng tính chất liên hệ giữa thứ tự và phép cộng đối với bất đẳng thức để so sánh giá trị các biểu thức 
II) Chuẩn bị của giáo viên và học sinh : 
 GV : Giáo án, bảng phụ vẽ biển báo giao thông bài tập 4
 HS : Học thuộc khái niệm bất đẳng thức và tính chất, giải các bài tập ra về ở tiết trước 
III) Tiến trình dạy học : 
Hoạt động của giáo viên
Hoạt động của học sinh
Hoạt động 1 : Kiểm tra bài cũ 
HS 1 : 
Nêu khái niệm bất đẳng thức ?
Làm bài tập 1 trang 37 SGK
Các em có nhận xét gì bài làm của bạn ?
Phát biểu tính chất liên hệ giữa thứ tự và phép cộng?
Làm bài tập 2 trang 37 SGK
Các em có nhận xét gì bài làm của bạn ?
 Hoạt động 2 : Luyện tập 
Một em lên bảng giải bài tập 3 / 37 ?
Một em đứng tại chỗ trả lời bài tập 4 / 37
Một em lên bảng giải bài tập 2 / 41 SBT ?
Một em lên bảng giải bài tập 8 / 42 SBT ?
Một em lên bảng giải bài tập 9 / 40 SGK
Một em lên bảng giải bài tập 10 / 40 SGK
Một em lên bảng giải bài tập 11 / 40 SGK
Một e ... hiệm của bất phương trình đã cho
b) Có phải mọi giá trị của ẩn x đều là nghiệm của bất phương trình đã cho hay không ?
Làm bài tập 29 trang 48
Tìm x sao cho 
a) Giá trị của biểu thức 2x - 5 không âm ;
b) Giá trị của biểu thức -3x không lớn hơn giá trị của biểu thức -7x + 5
Giá trị của biểu thức 2x - 5 không âm, có nghĩa là gì ? 
Giá trị của biểu thức -3x không lớn hơn giá trị của biểu thức -7x + 5 có nghĩa là gì ?
Làm bài tập 30 trang 48
( GV đưa đề lên màn hình )
Làm bài tập 31 trang 48
Giải các bất phương trình và biểu diễn tập nghiệm trên trục số
a) b) 
c) d) 
Làm bài tập 32 trang 48
Giải các bất phương trình
8x +3(x + 1) > 5x - (2x - 6) 
2x(6x - 1) > (3x - 2)(4x + 3)
Bài tập về nhà : 33, 34 / 48, 49 SGK
HS Phát biểu hai quy tắc như SGK
28 / 48 Giải 
Thay x = 2 vào bất phương trình x2 > 0 ta được :
22 > 0 hay 4 > 0 khẳng định này là đúng
Vậy x = 2 là nghiện của bất phương trình x2 > 0
Thay x = -3 vào bất phương trình x2 > 0 ta được :
(-3)2 > 0 hay 9 > 0 khẳng định này là đúng
Vậy x = -3 là nghiện của bất phương trình x2 > 0
b) Không phải mọi giá trị của ẩn x đều là nghiệm của bất phương trình đã cho, vì khi x = 0 không phải là nghiệm của bất phương trình đã cho
Tập hợp nghiệm của bất phương trình x2 > 0 là 
29 / 48 Giải 
a) Giá trị của biểu thức 2x - 5 không âm tức là :
 2x - 5 0 2x 5 x 5 : 2 = 2,5
Vậy khi x 2,5 thì giá trị của biểu thức 2x - 5 không âm
Giá trị của biểu thức -3x không lớn hơn giá trị của biểu thức -7x + 5 tức là :
-3x -7x + 5 7x - 3x 5 
 4x 5 x 5: 4 = 1,2
Vậy khi x 1,2 thì giá trị của biểu thức -3x không lớn hơn giá trị của biểu thức -7x + 5
30 / 48 Giải 
Gọi số tờ giấy bác loại 5000đ là x (x nguyên dương) 
Vậy số tờ giấy bạc 2000đ là 15 - x
Theo đề ta có bất phương trình :
5000x + ( 15 - x )2000 70000
5x + ( 15 - x )2 70 5x + 30 - 2x 70
5x - 2x 70 - 30 3x 40 x 
Do x nguyên dương nên x có thể là số nguyên dương từ 1 đến 13 
Vậy số tờ giấy bạc 5000đ có thể là các số nguyên dương từ 1 đến 13 
Và số tiền nhiều nhất là 69000
31 / 48 Giải 
a) 15 - 6x > 5. 3 
15 - 6x > 15 -6x > 15 - 15 -6x > 0
x < 0 
 )/ / / / / / / / / / / / / / 
 0
b) 8 - 11x < 13. 4 8 - 11x < 52
-11x -4
 / / / / / / / / / / /(
 -4 0
c) 
	3(x - 1) < 2(x - 4) 3x - 3 < 2x -8
	3x - 2x < -8 + 3 x < -5 
 )/ / / / / / / / / / / / / / / / / / / / 
 -5 0
d) 
	5(2 - x) < 3(3 - 2x) 10 - 5x < 9 - 6x
	6x - 5x < 9 - 10 x < -1
 )/ / / / / / / / / / / / / / / / / / / / /
 -1 0
32 / 48 Giải
8x +3(x + 1) > 5x - (2x - 6)
	8x + 3x + 3 > 5x - 2x + 6
	11x + 3 > 3x + 6
11x - 3x > 6 - 3 
8x > 3
x > 
Vậy nghiệm của bất phương trình là x > 
2x(6x - 1) > (3x - 2)(4x + 3)
	12x2 - 2x > 12x2 + 9x - 8x - 6
	-2x > x - 6
6 > 2x + x
6 > 3x
2 > x
Vậy nghiệm của bất phương trình là x < 2
Tuần : 30	 phương trình chứa dấu Ngày soạn . . . . . . . . 
 Tiết : 63 giá trị tuyệt đối 	 Ngày giảng . . . . . . . 
I) Mục tiêu : 
Biết bỏ dấu giá trị tuyệt đối ở biểu thức dạng và dạng 
Biết giải một số phương trình dạng = cx + d và dạng = cx + d
II) Chuẩn bị của giáo viên và học sinh : 
 GV : Giáo án, bảng phụ ghi đề các ?
 HS : Ôn tập lại định nghĩa giá trị tuyệt đối của một số 
III) Tiến trình dạy học : 
Hoạt động của giáo viên
Hoạt động của học sinh
Phần ghi bảng
?1
?1
Hoạt động 1 : Kiểm tra bài cũ 
Định nghĩa giá trị tuyệt đối của một số
Theo định nghĩa trên khi bỏ dấu giá trị tuyệt đối ta phải chú ý đến điều gì ? 
Các em thực hiện 
Rút gọn các biểu thức :
a) C = + 7x - 4 khi x 0
b) D = 5 - 4x + khi x < 6
?2
Các em thực hiện 
Giải các phương trình 
a) = 3x + 1
b) = 2x + 21
HS:
Theo định nghĩa trên thì:
= a (tức là ta đã bỏ dấu giá trị tuyệt đối ) khi a 0
= -a(tức là ta đã bỏ dấu giá trị tuyệt đối ) khi a < 0
Vậy khi bỏ dấu giá trị tuyệt đối ta phải chú ý đến giá trị của biểu thức ở trong dấu giá trị tuyệt đối là âm hay không âm
 Giải 
a) C = + 7x - 4 khi x 0
Khi x 0 thì -3x 0 . Vậy
C = + 7x - 4 khi x 0
= -3x + 7x - 4 = 4x - 4
b) D = 5 - 4x + khi x < 6
Khi x < 6 thì x - 6 < 0. Vậy
 D = 5 - 4x + khi x < 6
= 5 - 4x - (x - 6) = 5 - 4x - x + 6
= - 5x + 11
a) = 3x + 1
Nếu x + 5 0 hay x -5 thì :
 = 3x + 1x + 5 = 3x + 1
5 - 1 = 3x - x 4 = 2x x = 2
x = 2 thoả mãn điều kiện
Nếu x + 5 < 0 hay x < -5 thì
 = 3x +1-(x + 5)=3x +1
-x - 5 = 3x +1-x-3x = 1+5 
-4x = 6 x = -1,5 (loại)
Vậy tập hợp nghiệm của phương trình là S = 
b) = 2x + 21
Nếu -5x 0 hay x 0 thì 
 = 2x + 21-5x = 2x + 21
-5x - 2x = 21-7x = 21
x = -3 thoả điều kiện
Nếu -5x 0 thì 
 = 2x + 215x = 2x + 21
5x - 2x = 213x = 21
x = 7 thoả điều kiện
Vậy tập hợp nghiệm của phương trình là S = 
1) Nhắc lại về giá trị tuyệt đối
Giá trị tuyệt đối của số a, kí hiệu là , được định nghĩa như sau
= a khi a 0
= -a khi a < 0
Chẳng hạn: , , 
Ví dụ 1: 
Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức :
a) A = 
b) B = 4x + 5 + khi x > 0
 Giải 
a) Khi x 3 ta có x - 3 0 
nên = x - 3. Vậy
A = x - 3 + x - 2 = 2x - 5
b) Khi x > 0, ta có -2x < 0 
nên = - (-2x) = 2x. Vậy
B = 4x + 5 + 2x = 6x + 5
2) Giải một số phương trình 
 chứa dấu giá trị tuyệt đối 
Ví dụ 2: 
Giải phương trình = x + 4 (1)
 Giải 
Ta có =3x khi 3x0 hay x0
 = -3x khi 3x < 0 hay x < 0
Vậy để giải phương trình (1) ta quy về giải hai phương trình sau:
a) phương trình 3x = x+ 4 đk x0
Ta có 3x = x + 4 3x - x = 4 2x = 4 x = 2
Giá trị x = 2 thoả mãn điều kiện 
x0, nên 2 là nghiện của phương trình (1)
b)phương trình -3x = x + 4 đk x<0 
Ta có -3x = x + 4 -3x - x = 4
	-4x = 4 x = -1
Giá trị x = -1 thoả mãn điều kiện 
x < 0, nên -1 là nghiện của phương trình (1)
Vậy tập hợp nghiệm của phương trình (1) là S = 
Ví dụ 3: 
Giải phương trình = 9 - 2x
 Giải 
Ta có:
= x -3 khi x -3 0 hay x3
= -(x-3) khi x-3<0 hay x< 3
Vậy để giải phương trình (2) ta quy về giải hai phương trình sau:
a)Phương trình x-3 = 9-2x đk x3
Ta có x - 3 = 9 - 2x 3x = 9 + 3
3x = 12 x = 4
Giá trị x = 4 thoả mãn điều kiện 
x 3, nên 4 là nghiện của (2)
b)phương trình-(x-3)=9-2x đk x<3
Ta có 
-(x - 3) = 9 - 2x -x + 3 = 9 - 2x
-x + 2x =9 - 3 x = 6
Giá trị x = 6 không thoả mãn điều kiện x < 3 , ta loại
Vậy tập hợp nghiệm của phương trình (2) là S = 
?2
?2
Tuần : 31	ôn tập chương IV	 	Ngày soạn . . . . . . . . 
Tiết : 64	Ngày giảng . . . . . . . 
I) Mục tiêu : 
 – Có kĩ năng giải bất phương trình bậc nhất và phương trình dạng và dạng 
 – Có kiến thức hệ thống hơn về bất đẳng thức , bất phương trình theo yêu cầu của chương
II) Chuẩn bị của giáo viên và học sinh : 
 GV : Giáo án, bảng phụ kẻ bảng tóm tắt liên hệ giữa thứ tự và phép tính
 HS : Ôn tập chương IV, trả lời các câu hỏi ôn tập chương
III) Tiến trình dạy học : 
Hoạt động của giáo viên
Hoạt động của học sinh
Hoạt động 1 : Ôn tập lí thuyết
1) Cho ví dụ về bất đẳng thức theo từng loại có chứa dấu và 
2) Bất phương trình bậc nhất một ẩn có dạng như thế nào ? Cho ví dụ ?
3) Hãy chỉ ra một nghiệm của bất phương trình trong ví dụ của câu hỏi 2?
4) Phát biểu quy tắc chuyển vế để biến đổi bất phương trình . Quy tắc này dựa trên tính chất nào của thứ tự tên tập hợp số ?
5) Phát biểu quy tắc nhân để biến đổi bất phương trình . Quy tắc này dựa trên tính chất nào của thứ tự tên tập hợp số ?
1) Ví dụ :
a) 5 + (-3) > -8 ; b) -8 2.(-4)
c) 4 + (-8) < 15 + (-8) d) -2 + 7 3
2) Bất phương trình bậc nhất một ẩn là bất phương trình dạng ax + b 0; ax + b 0; ax + b 0) trong đó a và b là hai số đã cho, a 0 
Ví dụ : 2x > 14 ; 7x - 2 3x + ; 0,8 - x 5
3) x = 9 là một nghiệm của bất phương trình 2x >14 
4) Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta phải đổi dấu hạng tử đó 
Quy tắc này dựa trên tính chất liên hệ giữa thứ tự và phép cộng của thứ tự tên tập hợp số
5) Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải :
– Giữ nguyên chiều bất phương trình nếu số đó dương
– Đổi chiều bất phương trình nếu số đó âm
Quy tắc này dựa trên tính chất thứ tự và phép nhân của thứ tự tên tập hợp số 
Một số bảng tóm tắt
Liên hệ giữa thứ tự và phép tính
(Với ba số a, b và c bất kì)
 Nếu a b thì a + c b + c 
 Nếu a < b thì a + c < b + c
 Nếu a b và c > 0 thì ac bc
 Nếu a 0 thì ac < bc
 Nếu a b và c < 0 thì ac bc
 Nếu a bc
Tập nghiệm và biểu diễn tập nghiệm của bất phương trình 
Bất phương trình
Tập nghiệm
Biểu diễn tập nghiệm trên trục số
x < a
 )/ / / / / / / / / / / / / / / /
 a
x a
 ] / / / / / / / / / / / / / / / /
 a
x > a
 / / / / / / / / / / / / /( 
 a
x a
 / / / / / / / / / / / / / [
 a
Hoạt động 2 : Luyện tập 
35 / 51
Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức :
a) A = 3x + 2 + 
 Khi x 0 thì ta có 5x sẽ thế nào với 0?
 Vậy = ?
b) B = - 2x + 12
Khi x 0 thì ta có -4x sẽ như thế nào với 0 (-4x0)
Vậy = ? ( -4x )
Khi x > 0 thì ta có -4x sẽ như thế nào với 0 (-4x < 0)
Vậy = ? [ - ( -4x ) = 4x ]
36 / 51 Giải các phương trình 
a) = x - 6
Nếu x 0 ta có :
 = x - 6 2x = x - 6 giải ra ta được x = -6
Vậy x = - 6 thoả điều kiện trên không ?
Do đó x = -6 có phải là nghiệm của phương trình đã cho không ?
c) = 2x + 12
37 / 51 Giải các phương trình
a) = 2x + 3
39 / 53
Kiểm tra xem -2 là nghiệm của bất phương trình nào trong các bất phương trình sau
a) -3x + 2 > - 5 b) 10 - 2x < 2
c) x2 - 5 < 1
Bài tập về nhà : 40, 41, 42, 43 / 53
Tiết sau kiểm tra 1 tiết
35 / 51 Giải 
a) A = 3x + 2 + 
Khi x 0 ta có 
A = 3x + 2 + 5x = 8x + 2
Khi x < 0 ta có 
A = 3x + 2 + (-5x) = 3x + 2 - 5x = -2x + 2
b) B = - 2x + 12
Khi x 0 ta có :
B = – 4x - 2x + 12 = - 6x + 12
Khi x > 0 ta có :
B = –(– 4x) - 2x + 12 = 4x - 2x + 12 = 2x + 12
36 / 51 Giải 
a) = x - 6
Nếu x 0 ta có :
 = x - 6 2x = x - 6 x = -6 ( loại )
Nếu x < 0 thí ta có :
 = x - 6 -2x = x - 6 -3x = -6 
 x = 2 (loại )
Vậy phương trình = x - 6 vô nghiệm
c) = 2x + 12
Khi x 0 ta có :
= 2x + 124x = 2x + 12 2x = 12x = 6
Khi x < 0 ta có :
= 2x +12-4x = 2x +12-6x =12x = -2
Vậy tập hợp nghiệm của phương trình là 
37 / 51 Giải 
a) = 2x + 3
Nếu x - 7 0 hay x 7 ta có
 = 2x + 3x - 7 = 2x + 3 -7 - 3 = 2x - x
x = -10 ( không toả mãn điều kiện nên loại )
Nếu x - 7 < 0 hay x < 7 ta có
 = 2x + 3-(x - 7) = 2x + 3
-x + 7 = 2x + 3-x - 2x = 3 - 7-3x = -4
x = S = 
39 / 53
a) Lần lượt thay x = -2 vào các bất phương trình:
a) -3x + 2 > - 5 b) 10 - 2x < 2
 -3.(-2) + 2 > -5 10 - 2.(-2) < 2
 6 + 2 > -5 10 + 4 < 2
 8 > -5 Đúng 14 < 2 Sai
c) x2 - 5 < 1
 (-2)2 - 5 < 1 
 -1 < 1 Đúng 
 Vậy x = -2 là nghiệm của bất phương trình a, c
Tuần : 32	kiểm tra 1 tiết
Tiết : 65 	 chương IV

Tài liệu đính kèm:

  • docgiao an t8 minh.doc