Đề thi học sinh giỏi môn Toán Lớp 9 - Đề số 1

Đề thi học sinh giỏi môn Toán Lớp 9 - Đề số 1

Câu 1: Giải phương trình.

= 3 + 2

Câu 2: Cho hệ phương trình:

 x - 3y - 3 = 0

 x2 + y2 - 2x - 2y - 9 = 0

Gọi (x1; y1) và (x2; y2) là hai nghiệm của hệ phương trình trên. Hãy tìm giá trị của biểu thức.

M = (x1- x2)2 + (y1-y2)2.

Câu 3: Từ điểm A nằm ngoài đường tròn tâm O kẻ hai tiếp tuyến AB và AC (B,C là các tiếp điểm). Gọi M là điểm bất kỳ trên cung nhỏ BC của đường tròn (O) (M khác B và C). Tiếp tuyến tại M cắt AB và AC tại E, F, đường thẳng BC cắt OE và OF ở P và Q. Chứng minh rằng tỷ số không đổi khi M di chuyển trên cung nhỏ BC.

 

doc 1 trang Người đăng haiha338 Lượt xem 402Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi học sinh giỏi môn Toán Lớp 9 - Đề số 1", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề Số 1
Đề thi học sinh giỏi môn toán lớp 9
(Thời gian làm bài 150’)
Câu 1: Giải phương trình. 
= 3 + 2
Câu 2: Cho hệ phương trình:
	x - 3y - 3 = 0
	x2 + y2 - 2x - 2y - 9 = 0
Gọi (x1; y1) và (x2; y2) là hai nghiệm của hệ phương trình trên. Hãy tìm giá trị của biểu thức. 
M = (x1- x2)2 + (y1-y2)2.
Câu 3: Từ điểm A nằm ngoài đường tròn tâm O kẻ hai tiếp tuyến AB và AC (B,C là các tiếp điểm). Gọi M là điểm bất kỳ trên cung nhỏ BC của đường tròn (O) (M khác B và C). Tiếp tuyến tại M cắt AB và AC tại E, F, đường thẳng BC cắt OE và OF ở P và Q. Chứng minh rằng tỷ số không đổi khi M di chuyển trên cung nhỏ BC. 
Câu 4: Tìm các số x, y, z nguyên dương thoả mãn đẳng thức. 
2(y+z) = x (yz-1)
Câu 5: Một ngũ giác có tính chất: Tất cả các tam giác có 3 đỉnh là 3 đỉnh liên tiếp của ngũ giác đều có diện tích bằng 1. Tính diện tích của ngũ giác đó. 

Tài liệu đính kèm:

  • docde_thi_hoc_sinh_gioi_mon_toan_lop_9_de_so_1.doc
  • doc1A_DA_01.doc