Bài I (3,0 điểm):
Tính giá trị của biểu thức P = .Trong đó a là
nghiệm dương của phương trình : 4x2+x- = 0
Bài II ( 6,0 điểm):
1) Giả sử phương trình : x2+ax+b = 0 có hai nghiệm x1 , x2 và phương
trình :x2+cx +d = 0 có hai nghiệm x3 , x4 .Chứng minh rằng :
2(x1+x3) (x1+x4) (x2+x3) (x2+x4) = 2(b-d)2- (a2-c2)(b-d)+(a+c)2(b+d)
2) Chứng minh rằng nếu phương trình :
ax4+bx3+cx2-2bx+4a=0 (a0)
có hai nghiệm x1,x2 thoả mãn x1x2=1 thì 5a2=2b2+ac
Bài III (5,0 điểm):
Cho tam giác ABC có cả ba góc nhọn . AA,BB,CC lần lượt là các
đường cao. H là trực tâm
1) Chứng minh rằng:
2) Cho biết . Hãy tính tgB.tgC theo m
Bài IV (4,0 điểm):
Từ một điểm O tuỳ ý trên mặt phẳng chứa hình bình hành ABCD .Ta
nối với các đỉnh của hình bình hành đó .
Chứng minh rằng diện tích của tam giác AOC bằng tổng hoặc hiệu
diện tích của hai tam giác kề nhau,mỗi tam giác được tạo bởi hai trong
các đường thẳng OA,OB,OC,OD và các cạnh của hình bình hành
Sở Giáo dục và Đào Tạo đề thi chọn học sinh giỏi lớp 9 THCS thanh hoá Môn thi : Toán ( Thời gian làm bài : 150 phút) Bài I (3,0 điểm): Tính giá trị của biểu thức P = .Trong đó a là nghiệm dương của phương trình : 4x2+x- = 0 Bài II ( 6,0 điểm): 1) Giả sử phương trình : x2+ax+b = 0 có hai nghiệm x1 , x2 và phương trình :x2+cx +d = 0 có hai nghiệm x3 , x4 .Chứng minh rằng : 2(x1+x3) (x1+x4) (x2+x3) (x2+x4) = 2(b-d)2- (a2-c2)(b-d)+(a+c)2(b+d) 2) Chứng minh rằng nếu phương trình : ax4+bx3+cx2-2bx+4a=0 (a0) có hai nghiệm x1,x2 thoả mãn x1x2=1 thì 5a2=2b2+ac Bài III (5,0 điểm): Cho tam giác ABC có cả ba góc nhọn . AA’,BB’,CC’ lần lượt là các đường cao. H là trực tâm 1) Chứng minh rằng: 2) Cho biết . Hãy tính tgB.tgC theo m Bài IV (4,0 điểm): Từ một điểm O tuỳ ý trên mặt phẳng chứa hình bình hành ABCD .Ta nối với các đỉnh của hình bình hành đó . Chứng minh rằng diện tích của tam giác AOC bằng tổng hoặc hiệu diện tích của hai tam giác kề nhau,mỗi tam giác được tạo bởi hai trong các đường thẳng OA,OB,OC,OD và các cạnh của hình bình hành Bài V (2,0 điểm): Gọi A là tập hợp các số nguyên tố p sao cho phương trình : x2+x+1 = py có nghiệm nguyên x,y. Chứng minh rằng A là một tập hợp vô hạn ------------------------------------------------------
Tài liệu đính kèm: