A-Đại số :
1-Phép nhân đa thức với đơn thức ; với đa thức .
2-Những hằng đẳng thức đáng nhớ .
3-Các phương pháp phân tích một đa thức thành nhân tử .
Lưu ý :Phối hợp nhiều phương pháp để phân tích đa thức thành nhân tử và phương pháp
tách hạng tử (thêm bớt hạng tử) .
Chẳng hạn : x4 + 4 = (x4 + 4x2 + 4) – 4x2 = (x2 + 2)2 – (2x)2 = (x2 – 2x + 2).(x2 + 2x + 2)
4-Phép chia 2 đơn thức ; phép chia đa thức cho đơn thức .
5-Phép chia đa thức một biến đă sắp xếp .
6-Định nghĩa hai phân thức bằng nhau .
7-Tính chất cơ bản của phân thức và áp dụng (rút gọn phân thức)
8-QĐMT của nhiều phân thức .
9-Các phép tính về phân thức .
10-Biến đổi biểu thức hữu tỉ và giá trị của phân thức.
ĐỀ CƯƠNG ÔN TẬP TOÁN 8 Học kỳ I :2009 – 2010 A-Đại số : 1-Phép nhân đa thức với đơn thức ; với đa thức . 2-Những hằng đẳng thức đáng nhớ . 3-Các phương pháp phân tích một đa thức thành nhân tử . Lưu ý :Phối hợp nhiều phương pháp để phân tích đa thức thành nhân tử và phương pháp tách hạng tử (thêm bớt hạng tử) . Chẳng hạn : x4 + 4 = (x4 + 4x2 + 4) – 4x2 = (x2 + 2)2 – (2x)2 = (x2 – 2x + 2).(x2 + 2x + 2) 4-Phép chia 2 đơn thức ; phép chia đa thức cho đơn thức . 5-Phép chia đa thức một biến đă sắp xếp . 6-Định nghĩa hai phân thức bằng nhau . 7-Tính chất cơ bản của phân thức và áp dụng (rút gọn phân thức) 8-QĐMT của nhiều phân thức . 9-Các phép tính về phân thức . 10-Biến đổi biểu thức hữu tỉ và giá trị của phân thức. B-Hình học : 1-Định nghiă tứ giác (lồi) và định lí tổng các góc của tứ giác . 2-Các loại tứ giác : h́nh thang , h́nh thang cân , h́nh b́nh hành , h́nh chữ nhật , h́nh thoi và h́nh vuông a)Định nghĩa. b)Tính chất . c)Dấu hiệu nhận biết . 3-Đường trung b́nh của tam giác và của h́nh thang : a)Các định nghĩa. b)Các định lí . 4-Tập hợp điểm cách đường thẳng d cho trước một khoảng bằng h cho trước . Lưu ý : Định nghĩa và tính chất của đường thẳng song song cách đều . 5-Các bài toán dựng h́nh cơ bản (7 bài toán học ở lớp 6 + lớp 7) Lưu ý : Các bước giải một bài toán dựng h́nh thang . 6-Đối xứng trục –Đối xứng tâm : a)Các định nghĩa b)Các h́nh có trục đối xứng và h́nh có tâm đối xứng . C-Hệ thống bài tập (luyện tập) : I-Phần đại số : 1-Thuộc 7 hằng đẳng thức đáng nhớ và nhận biết thành thạo đa thức viết được dưới dạng một hằng đẳng thức . 2-Thực hiện thành thạo phép nhân , chia hai đa thức .Đặc biệt phép chia đa thức một biến đă sắp xếp . 3-Phân tích một đa thức thành nhân tử . 4-Sử dụng các quy tắc đổi dấu phân thức & các phép tính về phân thức : rút gọn phân thức , chứng minh một biểu thức hữu tỉ ; chứng minh một bất đẳng thức . 5-T́m tập xác định của một biểu thức hữu tỉ và giá trị của phân thức . Lưu ư: +T́m giá trị của biến khi biết giá trị của một biểu thức . +T́m giá trị nguyên của biến khi biết giá trị của biểu thức có giá trị nguyên . +T́m giá trị của biến để biểu thức có giá trị nhỏ nhất hay lớn nhất và giá trị tương ứng của biểu thức ấy . II-Phần h́nh học : 1-Sử dụng định lí tổng các góc của tứ giác . 2-Chứng minh sự bằng nhau ; song song , . . . ; và nhận dạng một tứ giác . 3-Tính diện tích đa giác đơn giản ( tam giác vuông , h́nh chữ nhật h́nh vuông ). ĐỀ KIỂM TRA HỌC KỲ I Môn: Toán 8 (Thời gian: 90 phút) Đề: A A/ Lý thuyết: (2đ) Học sinh chọn một trong hai câu sau đây: Câu 1: a/ Cho hai đa thức A và B , B khác đa thức 0. Khi nào thì ta nói rằng đa thức A chia hết cho đa thức B? b/ Áp dụng : Cho A = x2-3x+2 , B=1-x. Đa thức A có chia hết cho đa thức B không? vì sao? Câu 2: a/ Nêu các dấu hiệu nhận biết hình thang cân? b/ Áp dụng: Cho tứ giác ABCD có AD = BC và , chứng tỏ rằng ABCD là hình thang cân. B/ Bài tập: (8đ) Bắt buộc Bài 1(1,5đ): Phân tích thành nhân tử: a/ ay2- 4ay +4a - by2+ 4by - 4b b/ 2x2 + 98 +28x - 8y2 Bài 2: (1đ) Chứng minh rằng biểu thức: có giá trị không phụ thuộc x, y Bài 3: (2,5đ) Rút gọn và tính giá trị biểu thức: với x = 2 và y = 20. Bài 4: (3đ) Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N, P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD. a/ (1,25đ) Chứng minh tứ giác MEPF là hình thoi . b/ (1,25đ) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm . c/ (0,5đ) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng . ĐỀ KIỂM TRA HỌC KỲ I Môn: Toán 8 (Thời gian: 90 phút) Đề: B A/ Lý thuyết: (2đ) Học sinh chọn một trong hai câu sau đây: Câu 1: a/ Cho hai đơn thức A và B, B khác đơn thức 0. Khi nào thì ta nói rằng đơn thức A chia hết cho đơn thức B? b/ Áp dụng: Cho A = x7yn , B = xny3. Chỉ ra tất cả các giá trị của n N để A chia hết cho B. Giải thích? Câu 2: a/ Nêu các dấu hiệu nhận biết một tứ giác là hình thoi dựa vào đường chéo của nó ? b/ Áp dụng: Cho hình bình hành ABCD, vẽ BHAD, BKDC. Biết rằng BH = BK, chứng tỏ rằng ABCD là hình thoi . B/ Bài tập: (8đ) Bắt buộc Bài 1(1,5đ): Phân tích thành nhân tử: a/ mx2- 4mx +4m - nx2+ 4nx - 4n b/ 3x2 + 48 +24x - 12y2 Bài 2: (1đ) Chứng minh rằng biểu thức: có giá trị không phụ thuộc x, y Bài 3: (2,5đ) Rút gọn và tính giá trị biểu thức: với x = 3 và y = 30. Bài 4: (3đ) Cho tứ giác MNPQ có NP =MQ và NP không song song với MQ, gọi A, B, C, D, E, F lần lượt là trung điểm của các đoạn thẳng MN, NP, PQ, QM, MP,NQ . a/ (1,25đ) Chứng minh tứ giác AFCE là hình thoi. b/ (1,25đ) Chứng minh các đoạn thẳng AC, BD, EF cùng cắt nhau tại một điểm. c/ (0,5đ) Tìm thêm điều kiện của tứ giác MNPQ để B,E,F,D thẳng hàng.
Tài liệu đính kèm: