Các dạng bài tập cần khai thác môn Toán 8

Các dạng bài tập cần khai thác môn Toán 8

DẠNG 1: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung:

 + Bài tập :

 1) Phân tích các đa thức sau thành nhân tử

a) 3x – 3y

b) 2x2 + 5x3+ x2y

c) 14x2y – 21 xy2 + 28x2y2

d) x(y – 1 ) – y(y – 1)

e) 10x(x – y) – 8y(y – x)

Giải:

a) 3x – 3y = 3(x – y)

b) 2x2 + 5x3+ x2y = x2(2 + 5x + y)

c) 14x2y – 21 xy2 + 28x2y2 = 7xy( 2x – 3y + 4xy)

d) x(y – 1 ) – y(y – 1) = (y – 1)(x – y)

e) 10x(x – y) – 8y(y – x) = 10x(x – y) + 8y(x – y) = 2 (x – y)(5x + 4y)

 

doc 15 trang Người đăng nhung.hl Lượt xem 1618Lượt tải 0 Download
Bạn đang xem tài liệu "Các dạng bài tập cần khai thác môn Toán 8", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
CÁC DẠNG BÀI TẬP CẦN KHAI THÁC
 A) . DẠNG 1: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung:
	+ Bài tập :
 1) Phân tích các đa thức sau thành nhân tử
3x – 3y
2x2 + 5x3 + x2y
14x2y – 21 xy2 + 28x2y2
x(y – 1 ) – y(y – 1)
10x(x – y) – 8y(y – x)
Giải:
3x – 3y = 3(x – y)
2x2 + 5x3 + x2y = x2(2 + 5x + y)
14x2y – 21 xy2 + 28x2y2 = 7xy( 2x – 3y + 4xy)
x(y – 1 ) – y(y – 1) = (y – 1)(x – y)
10x(x – y) – 8y(y – x) = 10x(x – y) + 8y(x – y) = 2 (x – y)(5x + 4y)
 2) Tìm x , biết :
	a) 5x(x – 2000) – x + 2000 = 0
	b) 5x2 = 13x
Giải:
	 a) Ta có : 5x(x – 2000) – x + 2000 = 0
	 5x(x – 2000) – (x – 2000) = 0
	 (x – 2000)(5x – 1) = 0
	 x – 2000 = 0 hoặc 5x – 1 = 0
	 · x – 2000 = 0 x = 2000
 · 5x – 1 = 0 5x = 1 x = 
	Vậy x = 2000 hoặc x = 
5x2 = 13x 5x2 – 13x = 0
 x(5x – 13 ) = 0
 5x = 0 hoặc 5x – 13 = 0
 · x = 0 
 · 5x – 13 = 0 x = 
 	Vậy x = 0 hoặc x = 
	 3) Chứng minh rằng : 55n+1 – 552 chia hết cho 54 ( Với n là số tự nhiên )
Giải:
 	Ta có : 55n+1 – 55 = 55n.55 – 55n = 55n(55 – 1) = 55n.54
	Mà 54 chia hết cho 54 nên 55n.54 ( đpcm)
	 4 ) Tính nhanh 
	a) 15,8 . 35 + 15,8 . 65
	b) 1,43 . 141 – 1.43 . 41
Giải:
15,8 . 35 + 15,8 . 65 = 15,8(35 + 65) = 15,8 . 100 = 1580
1,43 . 141 – 1.43 . 41 = 1,43 ( 141 – 41 ) 1,43 . 100 =143 
+ Bài tập tương tự: 
Phân tích các đa thức sau thành nhân tử
6x4 – 9x3
x2y2z + xy2z2 + x2yz2
(x + y ) 3 – x3 – y3
2x(x + 3) + 2(x + 3)
Tìm x , biết 
5x(x – 2) – x – 2 = 0
4x(x + 1) = 8( x + 1)
x(2x + 1) + = 0
x(x – 4) + (x – 4)2 = 0
Chứng minh rằng :
Bình phương của một số lẻ chia cho 4 thì dư 1
Bình phương của một số lẻ chia cho 8thì dư 1
+ Khái quat hóa bài toán :
	Phân tích đa thức sau thành nhân tử:
	A = pm+2.q – pm+1.q3 – p2.qn+1+ p.qn+3
+ Đề xuất bài tập tương tự:
	Phân tích các đa thức sau thành nhân tử:	 
4x(x – 2y) + 8y(2y – x )
3x(x + 7)2 – 11x2(x + 7 + 9(x + 7)
-16a4b6 – 24a5b5 – 9a6b4
8m3 + 36m2n + 54mn2 + 27n3
 B) . DẠNG 2: Phân tích đa thức thành nhân tử bằng phương pháp dung hằng đẳng thức
 	+ Bài tập :
Phân tích các đa thức sau thành nhân tử :
x2 + 6x + 9 
10x – 25 – x2
(a + b)3 + (a – b)3
(a + b)3 – (a – b)3
x3 + 27 
81x2 – 64y2
8x3 + 12x2y + 6xy2 + y3
 Giải:
x2 + 6x + 9 = x2+ 2 .x . 3 + 32 = (x + 3)2
10x – 25 – x2 = -( x2 – 2.x.5 + 52) = - (x – 5)2
(a + b)3 + (a – b)3= [(a + b) + (a – b)][(a + b)2 – (a + b)(a – b) + (a – b)2
 = 2a[a2 + 2ab + b2 – (a2- b2) + a2 – 2ab + b2 = 2a(a2 + 3b2)
(a + b)3 – (a – b)3 = [(a + b) - (a – b)][(a + b)2 + (a + b)(a – b) + (a – b)2]
 = ( a + b – a + b) (a2 + 2ab + b2 + a2- b2+ a2 – 2ab + b2 = 2b(3a2+ b2)
x3 + 27 = ( x + 3)(x2 – 3x + 9)
81x2 – 64y2 = (9x)2 – (8y)2 = (9x + 8y)(9x – 8y)
8x3 + 12x2y + 6xy2 + y3 = (2x)3 + 3.(2x)2.y + 3.(2x).y2 + y3 = (2x + y)3
Tìm x , biết :
x2 – 25 = 0
x2 – 4x + 4 = 0 
Giải :
x2 – 25 = 0
 ( x – 5 )(x + 5) = 0 
x2 – 4x + 4 = 0 x2 – 2.2x + 22 = 0
 (x – 2)2 = 0 
 x – 2 = 0
 x = 2
	 3) Chứng minh rằng hiệu các bình phương của hai số lẻ liên tiếp thì chia hết cho 8
Giải:
Gọi hai số lẻ liên tiếp là 2a – 1 và 2a + 1 ( a là số nguyên ) . Hiệu các bình phương của chúng là: ( 2a + 1)2 – (2a – 1)2.
Ta thấy ( 2a + 1)2 – (2a – 1)2. = (2a + 1 + 2a – 1 )(2a + 1 -2a + 1)
	= 4a.2 = 8a chia hết cho 8 
4)Tính nhẩm:
732 – 272 
372 – 132 
20022 – 22 
Giải:
732 – 272 = ( 73 + 27) (73 – 27) = 100 . 46 = 4600
372 – 132 = (37 – 13 )(37 + 13) = 24 . 50 = 1200
20022 – 22 = (2002 – 2)(2002 + 2) = 2000 . 2004 = 4008000 
+ Bài tập tương tự:
Phân tích các đa thức sau thành nhân tử:
( a + b + c)3 – a3 – b3 – c3
8(x + y + z)3 – (x + y)3 – (y + z)3 – (z – x)3
8x3 – 27 
– x3 + 9x2 – 27x + 27
Tìm x , biết :
4x2 – 49 = 0
x2 + 36 = 0
Chứng minh rằng với mọi số nguyên n ta có : (4n + 3)2 – 25 chia hết cho 8
Tính nhanh giá trị của biểu thức sau với a = 1982
M = (a + 4)2 + 2(a + 4)(6 – a) + (6 – a)2
+ Khái quat hóa bài toán :
- Chứng minh hiệu các bình phương của hai số lẻ liên tiếp thì chia hết cho 8
 - Chứng minh hiệu các bình phương của hai số chẳnû liên tiếp thì chia hết cho 16
+ Đề xuất bài tập tương tự:
Phân tích các đa thức sau thành nhân tử 
( 3x – 2y)2 – (2x + y)2
27x3 – 0,001 
[4abcd + (a2 + b2)(c2 + d2)]2 – 4[cd(a2 + b2) + ab(c2 + d2)]2
x6 + 2x5 + x4 – 2x3 – 2x2 + 1
2) Chứng minh rằng biểu thức : 4x(x + y) ( x + y + z)(x + y) y2z2 luôn luôn không âm với mọi giá trị của x , y và z
 C) . DẠNG 3: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
	+ Bài tập :
Phân tích các đa thức sau thành nhân tử :
x2 + 4x – y2 + 4
3x2 + 6xy + + 3y2 – 3z2
x2 – 2xy + y2 – z2 + 2zt - t2 
x2(y – z) + y2(z – x) + z2(x – y)
Giải:
x2 + 4x – y2 + 4 = x2 +2.x.2 + 22 – y2
 = (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
3x2 + 6xy + + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y + t)(x + y – z)
x2 – 2xy + y2 – z2 + 2zt - t2 = (x2 – 2xy + y2) – (z2 - 2zt + t2)
= (x – y)2 – (z – t)2 = (x – y + z – t )(x – y – z + t)
x2(y – z) + y2(z – x) + z2(x – y) 
 + Cách 1: Khai triển hai số hạng cuối rồi nhóm các số hạng làm xuất hiện nhân tử chung y – z 
x2(y – z) + y2(z – x) + z2(x – y) = x2(y – z) + y2z – y2x + z2x – z2y
	 = x2(y – z) + yz(y – z) – x(y2- z2) 
	 = (y – z)(x2 + yz – xy – xz)
	 = (y – z)[x(x – y) – z(x – y)]
	 = (y – z )(x – y)(x – z)
 + Cách 2:Tách z – x = -[(y – z) + (x –y)]
	x2(y – z) + y2(z – x) + z2(x – y) = x2(y – z) – y2[(y – x) + (x – y)] + z2(x – y)
	 = (y – z)(x2 - y2) – (x – y)(y2 – z2)
	 = (y – z)(x + y)(x – y) – (x – y)(y + z)(y – z)
	 = (y – z)(x – y)(x + y – y – z )
	 = (y – z)(x – y)(x – z) 
Tìm x , biết :
x(x – 2) + x – 2 = 0
5x(x – 3) – x + 3 = 0
Giải:
x(x – 2) + x – 2 = 0 (x – 2)(x + 1) = 0
 x – 2 = 0 hoặc x +1 = 0
	 x = 2 hoặc x = -1 
 	b) 5x(x – 3) – x + 3 = 0 5x(x – 3) – (x – 3) = 0
	 (x – 3)(5x – 1) = 0
	 	 x – 3 = 0 hoặc x – 1 = 0
	 x = 3 hoặc x = 1
+ Bài tập tương tự:
Phân tích các đa thức sau thành nhân tử :
x3 + 3x2y + x + 3xy2 + y + y3
x3 + y(1 – 3x2) + x(3y2 – 1) – y3
27x3 + 27x2 + 9x + 1 + + 
x2y + xy2 – x – y 
8xy3 – 5xyz – 24y2 + 15z
Tìm x , biết : 
x2 – 6x + 8 = 0
9x2 + 6x – 8 = 0
x3 + x2  + x + 1 = 0
x3 - x2 - x + 1 = 0
+ Khái quát hóa bài toán : 
	Phân tích đa thức thành nhân tử : pm + 2 q – pm + 1 q3 – p2 qn + 1 + pq n + 3
+ Đề xuất bài tập:
Phân tích các đa thức sau thành nhân tử:
bc(b + c) + ac(c – a) – ab(a + b)
x(x + 1)2 + x(x – 5) – 5(x + 1)2
ab(a – b) + bc(b – c) + ca(c – a)
x3z + x2yz – x2z2 – xyz2
Tìm tất cả các giá trị của x , y sao cho: xy + 1 = x + y 
Phân tích đa thức thành nhân tử rồi tính giá trị của đa thức với x = 5,1 ; y = 3,1 của đa thức : x2 – xy – 3x + 3y
 D) . DẠNG 4: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
	+ Bài tập :
Phân tích các đa thức sau thành nhân tử:
a3 + b3 + c3 – 3abc
(x – y )3 + (y – z )3 + (z – x)3
Giải:
 •° Cách 1:
a3 + b3 + c3 – 3abc = (a + b)3 – 3ab(a + b) + c3 – 3abc 
	 = (a + b)3 + c3 – 3ab(a + b) – 3abc
 	 = (a + b + c)[(a + b)2 – (a + b) c + c2] – 3ab(a + b + c)
 	 = (a + b + c)(a2 + 2ab + b2 – ac –bc + c2 – 3ab
	 = (a + b + c)(a2 + b2 + c2 – ab – bc – ca )
	 • ° Cách 2:
	a3 + b3 + c3 – 3abc = a3 + a2b + a2c + b3 + ab2 + b2c + c3 + ac2 + bc2 – a2b – abc - a2c – ac2 – abc –b2c – abc – bc2
= a2(a + b + c) + b2(b + a + c) + c2(c + a + b) – ab(a + b + c) – ac((a + c + b) – bc(b + a + c) 
	 = (a + b + c)(a2 + b2 + c2 – ab – ac – bc)
• ° Cách 1:
Đặt x – y = a ; y – z = b ; z – x = c, thì a + b + c = 0
Khi đó theo câu a ta có : a3 + b3 + c3 – 3abc = 0 
 Hay a3 + b3 + c3 = 3abc
	Vậy (x – y )3 + (y – z )3 + (z – x)3 = 3(x – y)(y – z)(z – x)
	 •° Cách 2:
	Để ý rằng (a + b)3 = a3 + 3a2b + 3ab2 + b3 = a3 + 3ab(a + b) + b3
	 Và (y – z) = (y – x) + (x – z )
Do đó : (x – y)3 + (y –z )3 + (z – x)3 = [(y – x) + (x – z)]3 + (z – x)3 + (x – y)3
 = (y – x)3 +3(y – x)(x –z)[( y – x) + (x –z)]+ (x – z)3 – (x –z )3 – (y – x)3
	 = 3(x – y)(y – z)(z – x)
° Cách 3: Khai triển các hằng đẳng thức rồi sử dụng phương pháp đặt thừa số
 chung 
	(x – y )3 + (y – z )3 + (z – x)3 = x3 – 3x2y + 3xy2 – y3 + y3 – 3y2z + 3yz2 – z3 + z3 
 – 3z2x + 3zx2 – x3
	 = - 3x2y + 3xy2 – 3y2z + 3yz2 – 3z2x + 3zx2
	 = 3(-x2y + xy2 – y2z + yz2 – z2x + zx2)
	 = 3[-xy(x – y) – z2(x – y) + z(x – y)(x + y)]
	 = 3(x – y)( - xy – z2 + xz + yz)
	 = 3(x – y)[y(z – x) – z(z – x)]
	 = 3(x – y)(z – x)(y –z )
Phân tích đa thức sau thành nhân tử bằng phương pháp tách các hạng tử:
x3 – 7x – 6 
Giải:
	 ° Cách 1: Tách số hạng -7x thành –x – 6x , ta có :
	x3 – 7x – 6 = x3 – x – 6x – 6 
	 = (x3 – x) – (6x + 6)
	 = x(x + 1)(x – 1) – 6(x + 1)
	 = (x + 1)(x2 – x – 6)
Để tiếp tục phân tích đa thức x2 – x – 6 thành nhân tử , ta lại tách số hạng – 6 thành – 2 – 4 . Khi đó :
	x3 – 7x – 6 = (x + 1)(x2 – x – 2 – 4 )
	 = (x + 1)[(x + 2)(x – 2) – (x + 2)]
	 = (x + 1)(x + 2)(x – 3)
	 ° Cách 2 : Tách số hạng – 7x thành – 4x – 3x , ta có:
	x3 – 7x – 6 = x3 – 4x – 3x – 6
	 = x( x + 2)(x – 2) – 3(x + 2)
	 = (x + 2)(x2 – 2x – 3)
Tiếp tục tách số hạng – 3 của nhân tử thứ hai thành – 1 – 2 , Ta có:
	x3 – 7x – 6 =(x + 2)(x2 – 1 – 2x – 2)
	 = (x + 2)[(x – 1)(x + 1) – 2( x + 1)]
	 = (x + 2)(x + 1)(x – 3 )
	 ° Cách 3: Tách số hạng – 6 = 8 – 14 , Ta có:
	x3 – 7x – 6 = x3 + 8 – 7x – 14 
	 = (x + 2)(x2 – 2x + 4) – 7(x + 2)
	 = (x + 2)(x2 – 2x – 3)
	Tiếp tục tách số hạng – 3 thành + 1 – 4 , Ta có :
	x3 – 7x – 6 = (x + 2)(x2 – 2x + 1 – 4 )
	 = (x + 2)[(x – 1)2 – 22]
	 = (x + 2)(x + 1)(x – 3)
Dùng phương pháp đặt ẩn phụ , phân tích đa thức thành nhân tử:
(x2 + x + 1)(x2 + x + 2) – 12 
4x(x + y)(x + y + z )(x + z) + y2z2
Giải:
	Đặt: x2 + x + 1 = y , ta có x2 + x + 2 = y + 1 . Ta có:
 	(x2 + x + 1)(x2 + x + 2) – 12 = y(y + 1) – 12 
	= y2 + y – 12 
	= y2 – 9 + y – 3 = (y – 3)(y + 3) + (y – 3)
	= (y – 3)(y + 4)
	Thay x2 + x + 1 = y , ta được :
	(x2 + x + 1 – 3)( x2 + x + 1 + 4) = (x2 + x – 2)( x2 + x + 5)
	 = [(x – 1)(x + 1) + (x – 1)]( x2 + x + 5)
	 = (x - 1)(x + 2)( x2 + x + 5)
b)4x(x + y)(x + y + z )(x + z) + y2z2 
 = 4x(x + y + z)(x + y)(x + z) + y2z2
 = 4(x2 + xy + xz)(x2 + xy + xz + yz) + y2z2
Đặt : x2 + xy + xz = m , ta có :
 4x(x + y + z)(x + y)(x + z) + y2z2 = 4m(m + yz) + y2z2
	= 4m2 + 4myz + y2z2 = (2m + yz)2
Thay m = x2 + xy + xz , ta được :
 (x + y)(x + y + z )(x + z) + y2z2 = (2x2 + 2xy + 2xz + yz)2 
	4) Dùng phương pháp hệ số bất định để :
a) Phân tích đa thức x3 – 19x – 30 thành tích hai đa thức bậc nhất và bậc hai
b) Phân tích đa thức x4 + 6x3 + 7x2 + 6x + 1 
Giải:
Kết quả cần phải tìm có dạng :
(x + a)(x2 + bx + c) = x3 + (a + b)x2 + (ab + c)x + ac
Ta phải tìm bộ số a , b , c thỏa mãn:
 x3 – 19x – 30 = x3 + (a + b)x2 + (ab + c)x + ac
Vì hai đa thức này đồng nhất , nên ta có: 
	 Vì a, c Z và tích ac = -30, do đó a, c 
	 Và a = 2 , c = -15 , Khi đó b = -2 thỏa mãn hệ thức trên . 
 Đó là bộ số phải tìm, tức là : x3 – 19x – 30 = (x + 2)(x2 – 2x – 15)
Dể thấy rằng 1 không là nghiệm của đa thức nên đa thức không có nghiệm nguyên , cũng không có nghiệm hữu tỉ .
Như vậy nếu đa thức đã cho phân tích được thành thừa số thì phải có dạng 
 (x2 + ax + b)(x2 + cx + d) = x4 + (a + c)x3 + (ac + b + d)x2 + (ad + bc)x + bd
Suy ra :
Từ hệ này ta tìm được a = b = d = 1 , c = 5
	Vậy x4 + 6x3 + 7x2 + 6x + 1 = ( x2 + x + 1)(x2 + 5x + 1)
 5) Phân tích đa thức sau thành nhân tử: x5 + x + 1
Giải:
 ° Cách 1
 	x5 + x + 1 = x5 + x4 + x3 – x4 – x3 – x2 + x2 + x + 1
	 = x3(x2 + x + 1) – x2(x2 + x + 1) + 1(x2 + x + 1)
	 = (x2 + x + 1)(x3 – x2 + 1)
 ° Cách 2 : 
 x5 + x + 1 = x5 – x2 + x2 + x + 1 
	 = x2(x3 – 1) + 1(x2 + x + 1)
	 = x2(x – 1)(x2 + x + 1) + 1(x2 + x + 1)
 = (x2 + x + 1)[(x2(x – 1) + 1]
	 = (x2 + x + 1)[x3 – x2 + 1)
6)Phân tích đa thức sau thành nhân tử : x2 – 8x + 12
Giải:
 ° Cách 1: x2 – 8x + 12 = x2 – 2x – 6x + 12
	 = (x2 – 2x) – (6x – 12)
	 = x(x – 2) – 6(x – 2)
	 = (x – 2)(x – 6) 
 ° Cách 2 : x2 – 8x + 12 = (x2 – 8x + 16) – 4 
	 = (x – 4)2 - 22
	 = (x – 4 + 2)(x – 4 – 2 )
	 = (x – 2 )(x – 6)
 ° Cách 3 : x2 – 8x + 12 = x2 – 36 – 8x + 48
	 = (x2 – 36) – (8x – 48)
	 = (x + 6)(x – 6) – 8(x – 6)
	 = (x – 6)(x + 6 – 8)
	 = (x – 6)(x – 2)
	 ° Cách 4 : x2 – 8x + 12 = x2 – 4 – 8x + 16
	 = (x2 – 4) – (8x – 16)
	 = (x + 2)(x – 2) – 8(x – 2)
	 = (x – 2)(x + 2 – 8)
	 = (x – 2)(x – 6)
 ° Cách 5: x2 – 8x + 12 = x2 – 4x + 4 – 4x + 8 
	 = (x2 – 4x + 4) – (4x – 8)
	 = (x – 2)2 – 4(x – 2)
	 = (x – 2)(x – 2 – 4)
	 = (x – 2)(x – 6)
 ° Cách 6: x2 – 8x + 12 = x2 – 12x + 36 + 4x – 24 
	= (x2 – 12x + 36) + (4x – 24)
	= (x – 6)2 + 4(x – 6)
	= (x – 6)(x – 6 + 4)
	= (x – 6)(x – 2)
7)Phân tích đa thức sau thành nhân tử : x2 + 4xy + 3y2
Giải:
	 ° Cách 1: x2 + 4xy + 3y2 = x2 + xy + 3xy + + 3y2
	 = (x2 + xy) + (3xy + + 3y2)
	 = x(x + y) + 3y(x + y)
	= (x + y)(x + 3y)
	 ° Cách 2 : x2 + 4xy + 3y2 = x2 + 4xy + 4y2 – y2
	= (x2 + 4xy + 4y2) – y2
	= (x + 2y)2 – y2
	= (x + 2y + y)(x + 2y – y)
	= (x + 3y)(x + y)
 ° Cách 3 : x2 + 4xy + 3y2 = x2 – y2 + 4xy + 4y2
	= (x2 – y2) + ( 4xy + 4y2)
	= (x + y)(x – y) + 4y(x + y)
	= (x + y)(x – y + 4y)
	= (x + y)(x + 3y)
	 ° Cách 4 : x2 + 4xy + 3y2 = x2 – 9y2 + 4xy + 12y2
	= (x2 – 9y2) + (4xy + 12y2)
	= (x + 3y)(x – 3y) + 4y(x + 3y)
	= (x + 3y)(x – 3y + 4y)
	= (x + 3y)(x + y)
	 ° Cách 5 : x2 + 4xy + 3y2 = x2 + 2xy + y2 + 2xy + 2y2
	= (x2 + 2xy + y2) + (2xy + 2y2)
	= (x + y)2 + 2y(x + y)
	= (x + y)(x + y + 2y)
	= (x + y)( x + 3y)
	 ° Cách 6 : x2 + 4xy + 3y2 = x2 + 6xy + 9y2 – 2xy – 6y2
	= (x2 + 6xy + 9y2) – (2xy + 6y2)
	= (x + 3y)2 – 2y(x + 3y)
	= (x + 3y)(x + 3y – 2y)
	= (x + 3y)(x + y) 	
 ° Cách 7 : x2 + 4xy + 3y2 = 4x2 + 4xy – 3x2 + 3y2
	= (4x2 + 4xy) – (3x2 – 3y2)
	= 4x(x + y) – 3(x + y)(x – y)
	= (x + y)(4x – 3x + 3y)
	= (x + y)(x + 3y)
 8)Phân tích đa thức sau thành nhân tử: a3(b2 – c2) + b3(c2 – a2) + c3(a2 – b2)
Giải:
° Cách 1: a3(b2 – c2) + b3(c2 – a2) + c3(a2 – b2) 
	= a3(b2 – c2) + b3[(c2 – b2) – (a2 – b2) ] + c3(a2 – b2)
	= a3(b2 – c2) + b3(c2 – b2) – b3(a2 – b2) + c3(a2 – b2)
	= (b2 – c2)(a3 – b3) – (a2 – b2)(b3 – c3)
	= (b + c)(b – c)(a – b)(a2 + ab + b2) – (a + b)(a – b)(b – c)(b2 + bc + c2)
	= (a – b)(b – c)[(b + c)(a2 + ab + b2) – (a + b)( b2 + bc + c2)]
	= (a – b)(b – c)(a2b + ab2 + b3 + a2c + abc + b2c – ab2 – abc – ac2 – b3 – b2c – bc2
	 = (a – b)(b – c)(a2b + a2c – bc2 – ac2)
	 = (a – b)(b – c)[b(a2 – c2) + ac(a – c)]
	 = (a – b)(b – c)[b(a – c)(a + c) + ac(a – c)]
	 	 = (a – b)(b – c)(a – c)(ab + bc + ac)
	 ° Cách 2 : M = a3(b2 – c2) + b3(c2 – a2) + c3(a2 – b2)
 Xem M là đa thức biến a , khi a = b thì M = 0 nên M chia hết cho a – b . Do vai trò của 
 a , b , c giống nhau khi ta hoán vị vòng quanh nên M chia hết cho b – c , M chia hết cho c – a 
	Ta có : M = (a – b)(b – c)(c – a)(ab + bc + ca). P
	Cho a = - 1 , b = -1 , c = 0 ta có P = -1 
	Do đó : a3(b2 – c2) + b3(c2 – a2) + c3(a2 – b2) = (a – b)(b – c)(a – c)(ab + bc + ca)
9)Tìm x , biết :
(2x – 1)2 – (x +3)2 = 0
5x(x – 3) + 3 – x = 0
Giải:
	a) (2x – 1)2 – (x +3)2 = 0 [(2x – 1) + (x +3)][ (2x – 1) - (x +3) = 0
	 ( 2x – 1 + x +3)( 2x – 1 – x – 3 ) = 0 
	 (3x + 2)(x – 4 ) = 0 
5x(x – 3) + 3 – x = 0 5x(x – 3) – (x – 3) = 0
 	 (x – 3)(5x – 1) = 0 
10)Tìm x , biết :
(5 – 2x)(2x + 7) = 4x2 – 25
x3 + 27 + (x + 3)(x – 9) = 0
4(2x + 7) – 9(x + 3)2 = 0
(5x2 + 3x – 2 )2 = (4x2 – 3x – 2 )2 
Giải
(5 – 2x)(2x + 7) – 4x2 + 25 = 0
(5 – 2x)(2x + 7) – (5 – 2x)(5 + 2x) = 0
 (5 – 2x)( 2x + 7 – 5 – 2x ) = 0
	(5 – 2x).2 	 = 0
	 5 – 2x	= 0
 x 	= 	
x3 + 27 + (x + 3)(x – 9) = 0
(x + 3)(x2 – 3x + 9 ) + ( x + 3)(x – 9) = 0 
(x + 3)( x2 – 3x + 9 + x – 9) = 0
(x + 3)(x2 – 2x) 	 = 0
x(x – 2)(x + 3) 	 = 0
4(2x + 7)2 – 9(x + 3)2 = 0 
[2(2x + 7)]2 – [3(x + 3)]2 = 0
(4x + 14)2 – (3x + 9)2 = 0 
 (4x + 14 + 3x + 9)(4x + 14 – 3x – 9 ) = 0
(7x + 23)(x + 5) = 0
(5x2 + 3x – 2 )2 = (4x2 – 3x – 2 )2
 	 (5x2 + 3x – 2 )2 - (4x2 – 3x – 2 )2 = 0
	 (5x2 + 3x – 2 + 4x2 – 3x – 2)( 5x2 + 3x – 2 – 4x2 + 3x + 2) = 0
	 (9x2 – 4 )(x2 + 6x) = 0
	 (3x – 2 )(3x + 2)x(x + 6) = 0
11)Chứng minhrằng: n3 – n chia hết cho 6 với mọi n Z
Giải:
	Ta có : n3 – n = n(n2 – 1) = n(n – 1)(n + 1)
 ° Với mọi n Z , khi chia n cho 2 xảy ra hai trường hợp : 
+ Trương hợp 1: n chia hết cho 2 , khi đó tích n(n – 1)(n + 1) chia hết cho 2 
+ Trương hợp2: n chia hết cho 2 dư 1 , khi đó n – 1 chia hết cho 2 nên tích
 n(n – 1)(n + 1) chia hết cho 2
 ° Với mọi n Z , khi chia n cho 3 xảy ra ba trường hợp:
	+ Trương hợp 1: n chia hết cho 3 , khi đó tích n(n – 1)(n + 1) chia hết cho 3
	+ Trường hợp 2 : n chia cho 3 dư 1 , khi đó n – 1 chia hết cho 3 nên tích chia
 hết cho 3 
 + Trường hợp 3: n chia cho 3 dư 2 , khi đó n + 1 chia hết cho 3 nên tích chia 
 hết cho 3 
	Vậy trong mọi trường hợp n3 – n chia hết cho 2 và 3 .
	Do 2 và 3 là hai số nguyên tố cùng nhau .
	Suy ra : n3 – n chia hết cho 2 x 3 = 6 
 12) Cho a, b , c thỏa mãn a + b + c = 0 . Chứng minh rằng : a3 + b3 + c3 = 3abc 
Giải:
	° Cách 1 : 
	a + b + c = 0 a + b = - c (a + b)3 = (- c)3
	 a3 + b3 + 3ab(a + b) = - c3 a3 + b3 + 3ab(- c) = - c3
	 a3 + b3 + c3 = 3abc
	 ° Cách 2 :
	a + b + c = 0 a + b = - c - ab(a + b) = abc 
	 - a2b – ab2 = abc 
	Tương tự: - b2c – bc2 = abc ; - c2a – ca2 = abc 
	Do đó : 3abc = - a2b – ab2 – b2c – bc2 – c2a – ca2
	 3abc = - a2(b + c) – b2(a + c) – c2(a + b)
	 3abc = - a2(-a) – b2(-b) – c2(-c)
	 a3 + b3 + c3 = 3abc 
	 ° Cách 3 :
	a + b + c = 0 a + b = - c - c2(a + b) = c3
	 -a2c – bc2 = c3
	Tương tự : -ab2 – cb2 = b3 ; -ba2 – ca2 = a3
	Do đó : -ab2 – cb2 – ab2 – cb2 – ba2 – ca2 = a3 + b3 + c3
	 - ac( c + a) – bc(c + b) – ab(b + a) = a3 + b3 + c3
	 -ac(-b) – bc(-a) – ab(-c) = a3 + b3 + c3
	 a3 + b3 + c3 = 3abc
13)Tính nhanh : 
x2 + vơi x = 49,75
x2 – y2 – 2y – 1 với x = 93 , y = 6
Giải:
x2 + = x2 + = = (x + 0,25)2
	Với x = 48,75 thì (49,75 + 0,25)2 = 502 = 2500
+ Khái quát hóa bài toán :
 1) Phân tích đa thức x3m + 2 + x3n + 1 + 1 ( m ,n N ) thành nhân tử 
 2) Cho đa thức : B = a4 + b4 + c4 – 2a2b2 – 2a2c2 – 2b2c2
	a) Phân tích B thành bốn nhân tử bậc nhất 
	b) Chứng minh rằng nếu a , b , c là số đo độ dài các cạnh của một tam giác thì b < 0
 3) Chứng minh rằng với mọi số nguyên n thì số A = n3(n2 – 7)2 – 36n chia hết cho 105
+ Đề xuất bài tập :
	1) Phân tích các đa thức sau thành nhân tử :
	a) x5 – x4 – x3 – x2 – x – 2 
	b) x8 + x6 + x4 + x2 + 1
	c) x8 + x7 + 1 
	d) x9 – x7 – x6 – x5 + x4 + x3 + x2 + x + 1 
	2) Phân tích các đa thức sau thành nhân tử bằng phương pháp đặt ẩn phụ 
	a) (x2 + x)2 – 2(x2 + x) – 15 
	b) (x + 2)(x + 3)(x + 4)(x + 5) – 24 
	c) (x2 + 8x + 7)( x2 + 8x + 15) + 15
	d) (x2 + 3x + 1)( x2 + 3x + 2) – 6 
	3) Phân tích các đa thức sau thành nhân tử bằng phương pháp thêm , bớt hoặc tách các hạng tử: 
	a) bc(b + c) + ca(c – a) – ab(a + b)
	b) 2a2b + 4ab2 – a2c + ac2 – 4b2c + 2bc2 – 4abc 
	c) y(x – 2z)2 + 8xyz + x(y – 2z)2 – 2z(x + y)2

Tài liệu đính kèm:

  • docBT DA phan phan tich da thuc.doc